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1. Introduction: In this paper, we survey some of the recent studies on the complex
structure of an isolated complex singularity through the CR structures of its local links. We
also present some examples and open problems, which may guide us for the future investiga-
tion along these lines of research.

To start with, we let V be a complex space with an isolated non-regular point p ∈ V .
Assume dimCV ≥ 2. One of the main themes in several complex variables is to understand the
complex structure of the germ of V at p. This problem can be approached by both algebraic
and analytic methods. The algebraic method uses the ideal of holomorphic functions defining
the germ of V at p, while the analytic method relies more on the so-called CR and subelliptic
analysis on the local links of V near p. Our survey in this article will mainly be on the
analytic aspect of such a study.

2. Links: Since our concern here is mainly local, we assume that V is embedded into
a complex Euclidean space Cm with p = 0. Suppose ρ(z) be a smooth strongly plurisubhar-
monic function defined in a certain connected open subset U in Cm with V ⊂⊂ U , ρ(0) = 0,
ρ(z) > 0 for z 6= 0 and ρ : U → Image(ρ(U)) proper. The following definition is standard in
the literature (See [Md] [Mil]):

Definition 2.1: Let Mρ,ε = {z ∈ V : ρ(z) = ε}. The Mρ,ε is called the ε-link of (V, 0)
associated with ρ. When ρ = |z|2, Mρ,ε is called the standard ε-link of V . For the standard
link, we simply write Mε for Mρ,ε.

By the Sard theorem, for almost all 0 < ε << 1, Mρ,ε is a compact smooth submanifold
embedded in V of real co-dimension 1. Also, for the standard ρ = |z|2, there is an ε0 < 1
such that for any 0 < ε << ε0, Mρ,ε is smooth. In what follows, we will assume ε << 1,
unless otherwise stated. Also, we assume dimCV, dimCV ′ ≥ 2.
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A crucial fact that makes it possible to study (V, 0) through its links is that Mρ,ε,
whenever smooth, carries a partial complex structure naturally induced from V , called the
inherited Cauchy-Riemann structure. (See [BER]). More precisely, for any q ∈ Mρ,ε, define

T (1,0)
q Mρ,ε = T (1,0)

q V ∩ CTqMρ,ε.

Then the complex dimension of T
(1,0)
q Mρ,ε is dimCV − 1 for any q. Moreover, T

(1,0)
q Mρ,ε

depends smoothly on q ∈ Mρ,ε and thus naturally defines a complex smooth vector bundle
T (1,0)Mρ,ε over Mρ,ε with T

(1,0)
q Mρ,ε as its fiber space over q ∈ Mρ,ε. Moreover, there is a

nowhere zero smooth real vector field T over Mρ,ε such that we have the following splitting:

CTMρ,ε = T (1,0)Mρ,ε + T (0,1)Mρ,ε + CT.

This splitting defines what we call the inherited CR structure over Mρ,ε. The CR structure
is strongly pseudoconvex by our assumption that ρ is strongly plurisubharmonic.

Next, we assume (V ′, 0) be another germ of complex space with an isolated singularity
at 0. ρ′ is defined as before. We can then similarly define the link M ′

ρ′,ε′ . We say that Mρ,ε

is CR equivalent to M ′
ρ′,ε′ if there is a smooth diffeomorphism F from Mρ,ε to M ′

ρ′,ε′ that
respects the CR structures defined above. Namely,

F∗
(
T (1,0)Mρ,ε

)
= T (1,0)M ′

ρ′,ε′ .

A fundamental result along these lines of research is the following classical Hartogs type
extension theorem (see [AG] [Wh], etc):

Theorem 2.2: Suppose 0 is the only isolated singularity of the normal complex space
V and V ′, respectively. Assume that F is a CR equivalence map from Mρ,ε to M ′

ρ′,ε′ . Write
Vε = {z ∈ V : ρ(z) < ε} and V ′

ε′ = {z ∈ V ′ : ρ′(z) < ε′}. Then F extends as a biholomorphic
map from Vε to V ′

ε′ . In particular, (V, 0) is holomorphically equivalent to (V ′, 0).

Unfortunately, the above reduction is not reversible. By the Chern-Moser theory [CM],
for ε 6= ε′, Mρ,ε and Mρ,ε′ have, in general, very different CR structures. Finding the invariants
from the links which are directly related to the complex structure of the singularities is always
an interesting problem in this field of Several Complex Variables.

3. Spherical links: The unit sphere in Cn with n ≥ 2 may be regarded as the simplest
strongly pseudoconvex CR manifold. However, it does not bound any normal singularity.
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Compact spherical CR manifolds may be regarded as the simplest strongly pseudoconvex CR
manifolds which may bound normal singularities. Here, we recall that a CR manifold is said
to have a spherical CR structure if it is locally CR equivalent to a piece of the sphere of the
same dimension. A typical example of spherical CR manifolds is a spherical space form (in
terms of [Da]): MΓ := ∂Bn/Γ, where Bn is the unit ball in Cn and Γ is a finite subgroup of
Aut(Bn) with 0 as its only fixed point. By the invariant polynomial theory, one can construct
an algebraic realization Ψ of Cn/Γ into CN for a certain N ≥ n such that Ψ(∂Bn/Γ) bounds
a normal isolated complex singularity with Ψ(∂Bn/Γ) as one of its algebraic link. (See [Ca]
[Fo]). As an explicit example, let V := {(x, y, z) ⊂ C3 : y2 = 2xz}. Then its standard link
M with ε = 1 is algebraic and spherical, for the holomorphic map (t, τ) → (t2,

√
2tτ, τ2) is a

holomorphic covering map from ∂B3 into M . Conversely, we have the following:

Theorem 3.1([HJ]): Suppose that ρ is algebraic and has no critical value from 0 to ε0.
Suppose that for a certain ε < ε0, Mρ,ε carries a compact spherical CR structure. Assume that
V ⊂ Cn with n ≥ 2 has only an isolated normal singularity at 0. Then there is a finite unitary
subgroup Γ ⊂ Aut(Bn) and a biholomorphic map from Bn/Γ to Vε := {z ∈ V : ρ(z) < ε}.
In particular, (V, 0) is holomorphically equivalent to the quotient singularity (Bn/Γ, 0).

Theorem 3.1 is not stated in [HJ]. But the proof there with a slight modification gives
Theorem 3.1, which we discuss as follows.

Proof of Theorem 3.1: For any point w ∈ Mρ,ε, by the assumption, there is a CR
equivalence map Φw from a piece of the sphere S to a piece of the link Mρ,ε near w. Since ρ is
algebraic strong pseudoconvex, by the algebraicity theorem of the author proved in [Hu], Φw

is also an algebraic map. In particular, we see that Mρ,ε can be locally defined by (real Nash)
algebraic functions. Now, we fix one of Φw, denoted by Φ. Then Φ extends to an algebraic
map (possibly multiple-valued) from Cn into Cm. Let E be the set of poles and branching
points of Φ. Then Φ(S \E) ⊂ Mρ,ε. Let γ be a Jordan curve in S with γ([0, c0)) ⊂ Mρ,ε −E

and γ(c0) ∈ E. Suppose that for a certain sequence {tj} with tj < c0 and tj → c0, Φ(tj) → q.
Let Aq be an affine complex subspace of dimension n such that there is an affine linear
map πq fixing q, projecting Cm to Aq, with πq|V biholomorphic near q. Write Φq = πq ◦ Φ
and Nq = πq(Mρ,ε) near q. Then Φq, N q must also be (Nash) algebraic. Then with the
same argument as in the proof of Lemma 3.1 of [HJ], we see that a similar statement as in
Lemma 3.1 of [HJ] holds. This then implies that Φq(γ(t)) has limit q as t → c−0 . Now, the
same argument as in §4 of [HJ] shows that Φq extends holomorphically across γ(c) and thus
along any path inside S. Since S is simply connected, we conclude that the extension of
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Φ, still denoted by Φ, gives a single-valued holomorphic covering map from S to Mρ,ε. Let
Γ := {σj}k

j=1 be the deck transformations associated with this covering. We see easily that
Γ = {σj} extends to a finite subgroup of Aut(Bn) such that Φ induces a biholomorphic map
from Bn/Γ to Vε. Since Γ has no fixed point over S, we can assume without loss of generality
that 0 is the only fixed point of Γ. Now, the rest of the proof follows from Theorem 2.2.

From the proof of theorem 3.1, we also see the following:

Corollary 3.2: Let V be a complex analytic space embedded in Cm with only an
isolated singularity at 0. Suppose that for a certain algebraic ρ as before, the corresponding
ε-link Mρ,ε carries a (compact) spherical CR structure. Then Mρ,ε is CR equivalent to a CR
spherical space form ∂Bn/Γ with Γ ⊂ Aut(Bn) a certain finite group with the only fixed
point at 0. In particular, the fundamental group of Mρ,ε is isomorphic to Γ.

Corollary 3.3: Let M be a (Nash) algebraic strongly pseudoconvex spherical CR sub-
manifold in Cm. Then M is CR equivalent to a CR spherical space form ∂Bn/Γ with
Γ ⊂ Aut(Bn) a finite group with the only fixed point at 0.

Corollary 3.3 fails when ρ is assumed to be real analytic. Indeed, by an example of
Burns-Shnider [BS], there are real analytic spherical CR submanifolds of dimension 3 in C2

with fundamental group of infinite order.
Moreover, in their private conversations with the author, Siu and Burns suggested the

following more general construction of analytic spherical links with fundamental group of
infinite order, by using the Grauert tube technique. This thus shows that the algebraicity
assumption in the above results are crucial for the statements to hold:

Let M be a complex manifold with a Hermitian metric h. The Grauert tube over its
holomorphic tangent bundle, induced from h, is defined to be the domain Ω := {v ∈ T (1,0)M :
h(v, v) < 1}. Assume that M is a ball quotient Bn/Γ, where Γ ⊂ Aut(Bn) is a (fixed-point
free) lattice. Assume that h is a hyperbolic metric with a negative constant holomorphic
sectional curvature. (Such an (M, h) is called a hyperbolic space form([Mok]).) The following
result is classical in the literature.

Proposition 3.4: Assume that (M, h) is a compact hyperbolic space form of dimension
n ≥ 1. Then the Grauert tube of its holomorphic tangent bundle is a domain in T (1,0)M

with real analytic spherical boundary.

Proof of Proposition 3.4: Indeed, for any point q ∈ M , let Uq be a small neighborhood of
q in M and choose a z-coordinates system in Uq with z(q) = 0 such that h takes the following
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standard form in the z-coordinates:

h =
∑

hjldzjdzl : hjl = cn
(1− |z|2)δjl + zjzl

(1− |z|2)2 .

Here cn is a constant depending only on n, which we can assume to be 1. Use (z, ξ) for
the coordinates of π−1(Uq) ⊂ T (1,0)M . In these coordinates, Ω and its boundary are then
defined, respectively, by

Ω ∩ π−1(Uq) := {(z, ξ) ∈ z(Uq)×Cn :
∑

hjl(z)ξjξl < 1} and

∂Ω ∩ π−1(Uq) = {(z, ξ) ∈ z(Uq)×Cn :
∑

hjl(z)ξjξl = 1}.

Then the negativity of the holomorphic bisectional curvatures guarantees the strong pseudo-
convexity of ∂Ω and the CR symmetry of ∂Ω guarantees the spherical property of ∂Ω.

In fact, for any point (z0, ξ0) ∈ ∂Ω, let σ ∈ Aut(Bn) be such that σ(z0) = 0 and σ

pulls back the vector ξ0 to a vector of the form v0 = (a1, 0, · · · , 0) with a1 > 0. Then (σ, dσ)
defines a CR diffeomorphism from a neighborhood of (z0, ξ0) in ∂Ω to a neighborhood of
(0, v0) in ∂Ω. Apparently, a1 = 1. Now, Ω near (0, v0) is defined by an equation of the form
ρ = |ξ|2 + 2|z|2 + O(|(ξ − v0)|k|z|l) < 1 with k + l ≥ 3. Hence, we see that Ω is strongly
pseudoconvex and all boundary points are CR equivalent. Hence, ∂Ω is spherical.

Now, applying the CR embedding theorem of Boutet de Monvel and Kohn [Bout] [Kn]
we can find a real analytic CR embedding F from ∂Ω into a certain CN . The extension
theorem of Kohn-Rossi [FK] shows that F extends to a holomorphic map from Ω into CN .
Apparently F must be a local holomorphic embedding from Ω \M and maps M into a point
which we can assume to be 0. Making use of the Kohn-Rossi theorem, the Harvey-Lawson
theorem and applying a normalization to resolve the normal-crossing singularities if necessary,
we can assume, without loss of generality, that F (∂Ω) bounds a normal Stein space with a
unique isolated normal singularity at 0. F is biholomorphic from Ω \ M to its image and
F−1({0}) = M . Based on this example, we pose the following:

Problem 3.5: Suppose V is a normal complex space with an isolated singularity at p.
Suppose that for some 0 < ε << 1 and a real analytic strongly plurisubharmonic function ρ

with ρ(z) > ρ(0) = 0 for z 6= 0, Mρ,ε is a real analytic spherical CR manifold. What can we
say about the complex structure of V at 0?
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4. Unitary equivalence, Brieskorn spheres and Siu’s program: In §3, we dis-
cussed the isolated singularities bounded by spherical CR manifolds. For general links, we
have the following rigidity result proved in Ebenfelt-Huang-Zaitsev [EHZ]:

Theorem 4.1 ([EHZ]): Suppose V, V ′ ⊂ CN be irreducible complex spaces with a sin-
gularity at 0, respectively. Suppose that dimCV = n ≥ 4 and 2N < 3n−1. For ε, ε′ write Mε

and M ′
ε′ for the standard ε-link and ε′-link of V and V ′, respectively. Assume that Mε and

Mε′ are smooth near p and p′, respectively; and assume that there is a local CR equivalence
map from a piece of Mε near p to a piece of M ′

ε′ near p′. Then there is a unitary map U such
that ε′U(V ) = εV ′. Namely, after a scaling, (V, 0) and (V ′, 0) are unitary equivalent.

The above result was first obtained by Webster in [We2] for the codimenional one case.
Theorem 4.1 reveals that the CR structure of links well over-determine the complex structures
of the singularities. While the codimensional restriction in Theorem 4.1 is important to get
an equivalence for the singularities through the local CR equivalence, however we have not
found so far an example which shows that the codimension restriction is also necessary in the
global setting. Namely, we pose the following:

Problem 4.2: Suppose V, V ′ ⊂ CN be complex spaces with isolated complex singularity
at 0. Suppose for ε, ε′ = 1, the standard links Mε and M ′

ε′ are globally CR equivalent. What
can we say about (V, 0) and (V ′, 0)?

When the dimension of V is small, even the topological information of the links gives
a strong implication of the complex structure near the singular point. A famous result of
this type is the Mumford theorem [Md], which states that if V only has an isolated normal
singularity at 0 and dimV = 2, then any local smooth link Mρ,ε can not be simply connected.
For n ≥ 3, Mumford’s result fails and , one has the following famous Brieskorn spheres [Br]
[Mil]:

Let ~a =< a1, · · · , an > with n ≥ 4. Here a′js are positive integers, at least one of which
is bigger than 1. Define

V (~a) = {(z1, · · · , zn) :
n∑

j=1

zaj = 0}.

Then 0 ∈ V (~a) is an isolated singularity. Write Mε(~a) = {z ∈ V (~a) : |z| = ε}. By the
work of Brieskorn and Milnor [Br] [Mil], for many choices of ~a, Mε(~a) are the topological
spheres, but may or may not be diffeomorphic to the standard sphere. In fact, all Milnor
exotic spheres can be realized as the links of the above form.
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Based on this phenomenon, Siu in [Siu4] has recently proposed a program trying to
determine the complex structure of (V, 0) by using the topological structure of its link together
with some other geometric information. The reader is referred to [Siu4] for more details on
this matter.

5. Holomorphic deformation of an isolated complex singularity: Links have
been playing an important role in the study of the deformation theory of isolated complex
singularities. (See, for instance, [BM] [Mi] [BE] [Lem] and references therein). Here, we only
discuss some results obtained in the author’s recent joint work with Luk-Yau in [HLY].

Let V ⊂ D(⊂ CN ) be a complex analytic variety with 0 ∈ V as a singular point. Suppose
that there is a holomorphic map π : V → ∆ := {t ∈ C : |t| < 1} such that Vt := π−1(t) is a
complex analytic variety in D with only isolated complex singularities near 0 for each t. Then
{Vt} is a holomorphic family of complex spaces. Vt is said to be a holomorphic deformation
of V0. Define Mε := {z ∈ V : |z| = ε} and Mt,ε := π−1(t)∩Mε. Then we obtain a CR family
of strongly pseudoconvex CR manifolds {Mt,ε} in case all links are smooth. More precisely,
we have the following definition:

Definition 5.1: (X, π, ∆) is called a CR family of strongly pseudoconvex CR manifolds
if the following holds: (i). X itself is a strongly pseudoconvex CR manifold; (ii) π is a
surjective CR map and each fiber has a naturally inherited CR structure.

Making use of the Kuranishi-Akahori-Webster embedding theorem [Ku] [Ak] [We2] and
the work of Siu-Ling [Siu1][Siu3][Ling] on the normal Stein completion of a family of (1, 1)
convex-concave manifolds, the following is derived in [HLY]:

Proposition 5.2: Suppose (X, π, ∆) is a CR family of strongly pseudo-convex CR
manifolds. Assume that dimRX ≥ 7. Then there is a unique complex Stein 2-normal space
X̂, which has X as part of its smooth boundary and a holomorphic map π̂ from X̂ to ∆ such
that (X̂, π̂, ∆) is a holomorphic family of Stein spaces with isolated singularities. Moreover
π̂ has smooth boundary value π along X.

The above Stein space X̂ is called the Siu-Ling filling of X. Proposition 5.2 indicates
a very nice correspondence between a CR family of strongly pseudoconvex CR manifolds
and a holomorphic family of Stein spaces with isolated singularities. This makes it possible
to study the holomorphic family of singular spaces by applying the method of subelliptic
analysis. Before stating some results along these lines, we recall the following definitions of
the Kohn-Rossi complex and Kohn-Rossi cohomology group [FK].
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Let M be an oriented CR manifold of CR dimension (n − 1) and let T be a nowhere
vanishing real vector field along M transversal to the contact bundle. Assign a pseudo-
Hermitian metric < ·, · > over M with the following properties:

For any p ∈ M and v1, v2 ∈ T
(1,0)
p M , < v1, v2 >p= 0, < v1, T |p >p= 0, < v1, T |p >p=

0, < v1, v2 >p= < v1, v2 >p.

Choose a real contact form θ over M and choose {ω1, · · · , ωn−1} ⊂ (T (1,0)
p )∗ such that

{ω1, · · · , ωn−1, θ|p, ω1, · · · , ωn−1} ⊂ (CTp)∗

is an orthonormal basis. Then any (m + l)-form ω at p can be uniquely decomposed as

ω =
∑

I,J:|I|+|J|=m+l

aIJωI ∧ ωJ + θ ∧ · · · .

We define the projection map of type (m, l) π(m,l)|p to be such that

π(m,l)|p(ω) =
∑

I,J:|I|=m,|J|=l

aIJωI ∧ ωJ .

Denote the image set of π(m,l)|p by Λ(m,l)
p (M). This linear space depends smoothly on p and

thus defines a smooth vector bundle over M with smooth projection map π(m,l), the space
of whose smooth sections over U ⊂ M is denoted by Λ(m,l)(U). Then db := π(m,l+1) ◦ d is a
smooth differential operator of first order, mapping Λ(m,l)(U) into Λ(m,l+1)(U) for any open
subset U of M . Here d is the usual DeRham differential operator over M . The integrability
of the CR structure shows that d2

b = 0 and thus one can form a differential complex, called
the Kohn-Rossi complex. The Kohn-Rossi cohomology of order (0, k), H

(0,k)
KR (M), is defined

as the quotient of the space of closed (0, k)-forms with the space of exact (0, k)-forms. It is
well known [FK] that for different choices of the pseudo-Hermitian metrics, one arrives at the
isomorphic Kohn-Rossi cohomology groups.

The following CR extension theorem proved in [HLY] is useful to study the holomorphic
family of complex spaces.

Theorem 5.3 ([HLY]): Suppose that (X, π, ∆) is a CR family of strongly pseudoconvex
CR manifolds with dimX ≥ 7. Assume that X can be embedded to a complex manifold.
Suppose that dimH

(0,1)
KR (Mt) = constant. Then any smooth CR function f0 over M0 = π−1(0)

can be extended as a smooth CR function f over X.
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When applying a result of Catlin [Cat1-2], one sees that the assumption that X can
be embedded to a complex manifold is satisfied automatically. The same remark applies
in what follows. The proof of Theorem 5.1 is based on the work of Catlin on the mixed
boundary value problem for the ∂̄- problem, Siu-Ling’s work on the direct image theorems
for a family of (1, 1) convex-concave manifolds. As an immediate application, one has the
following simultaneous CR embedding property under the constant dimensionality of the first
Kohn-Rossi cohomology group of each fiber.

Corollary 5.4([HLY]): Under the assumption as in Theorem 5.1, if M0 can be CR
embedded into CN by f0, then the map F = (f, π) embeds the family {Mt}|t|<<1 into
CN ×∆. Here f is the smooth CR extension of f0 to X. In particular, Mt for |t| << 1 can
be embedded into CN near f0(X0).

Corollary 5.4 is due to Tanaka [Ta] when f is only required to depend smoothly on the
parameter t. In this setting, the family can also be assumed to be just a smooth family
instead a CR family. ([Ta])

An immediate consequence of Corollary 5.4 is the flatness of the holomorphic family
of the Stein space with the Siu-Ling filling as its total space. The proof of the following
normality theorem in [HLY] is also based on the CR extension theorem in Theorem 5.2.

Theorem 5.5: Suppose the assumptions in Theorem 5.2 hold. Then X̂0 = π̂−1(0) is
normal.

A special case of Theorem 5.5 is due to Fujiki in [Fu].

The just mentioned results in [HLY] can be used to study the simultaneous blowing-down
problem for a family of complex manifolds with exceptional sets.

Recall that M̃ is said to be a smooth strongly pseudoconvex complex manifold if M̃ is
a complex manifold with smooth boundary ∂M̃ , that is strongly pseudoconvex with respect
to M̃ . Let X̃ be a complex manifold with X as part of its strongly pseudoconvex boundary.
We call (X̃, π̃, ∆) a family of smooth strongly pseudoconvex complex manifolds if (I): π̃ is
a surjective holomorphic map from X̃ to ∆, which extends smoothly to X = ∪t∂π̃−1(t) =
∪t∂X̃t, where X̃t = π̃−1(t); (II) (X, π, ∆) is a CR family of strongly pseudoconvex manifolds.
Now, let f be a holomorphic map from X̃0 := π̃−1(0) to the complex space Y ⊂ Cm, that
is biholomorphic near ∂X̃0 and extends to a smooth CR diffeomorphism from the boundary
to its image. Also, assume that f(∂X̃0) bounds precisely the complex space Y , which has, at
most, isolated singularities and has f(∂X̃0) as its smooth boundary. We say X̃0 resolves the
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singularities of Y through f in a broad sense (and in the regular sense if Y does have isolated
singularities). Notice that f then must be biholomorphic from X̃0 \ E into Y \ Sing(Y ) and
proper from X̃0 to Y , where Sing(Y ) is the singular set of Y . E = f−1(Sing(Y )) is called
the generalized exceptional set of X̃. (And E is the exceptional set in the regular sense if it
does not have any connected components of codimension greater than one in X̃0.) We will
call such an f a blowing-down map from X̃0 to its image Y . There have been many papers
in the past on when a family of strongly pseudoconvex complex manifolds (with exceptional
sets) can be simultaneously blown-down. (See the paper [Ri11-2] and the references therein.)

The above mentioned results can be used to give the following:

Theorem 5.6: Let (X̃, π̃, ∆) be a smooth holomorphic family of strongly pseudocon-
vex complex manifolds. Assume that X = ∪t∈∆∂X̃t can be CR embedded into a complex
manifold. Suppose that

dimH
(0,1)
KR (∂X̃t) = constant

and X̃0 is at least of complex dimension 3. Suppose that f0 is a blowing-down map from X̃0

to Cm. Then there is a map F = (f̃ , π̃) from X̃η := π̃−1(∆η) to Cm × C, which extends
smoothly over ∪|t|<η<<1∂X̃t such that f̃ |

X̃t
is a (holomorphic) blowing-down map from X̃t to

Cm with f̃ |
X̃0

= f0.

The argument in [HLY] does not cover the cases when the fiber is of three dimension.
Here, we state the following open question:

Problem 5.7: Let {Mt}t∈∆ be a CR family of 3-dimensional strongly pseudoconvex CR
manifolds. Suppose that the total space X admits a normal Stein filling. Suppose that M0

can be CR embedded into CN . Under what conditions, can be the nearby fiber Mt embedded
into CN?

Acknowledgment: The author would like to thank D. Burns, S. Y. Li and Y. T. Siu
for very helpful conversations related to the topics surveyed in this article.
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