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GLOBAL HOLOMORPHIC EXTENSION OF A

LOCAL MAP AND A RIEMANN MAPPING

THEOREM FOR ALGEBRAIC DOMAINS

Xiaojun Huang and Shanyu Ji

1. Introduction

In his paper of 1907 [Po07], Poincaré showed, among other things, that any
local non-constant holomorphic map f from an open piece of the sphere ∂B

2

into ∂B
2 extends to a global biholomorphic map between the ball B

2. This re-
sult was generalized to B

n+1 by Tanaka [Ta62] and was further established in a
much more general setting by Alexander [A74]. Since then, the mixed equiva-
lence problem was naturally formulated (see for instance [Wel82], [Be90]): How
far can a local equivalence map between the boundaries of two nice domains be
biholomorphically extended ? A significant contribution along the lines of this
direction was made by Webster: In [We77], he not only extended Poincaré’s the-
orem to real ellipsoids, but also did a pioneer work by showing a type of Chow’s
theorem for local maps between algebraic domains. In particular, he showed
that any local equivalence map between two smooth algebraic domains extends
as a branched algebraic map. Webster’s algebraicity theorem was established in
more general situations in the recent deep work of Baouendi, Ebenfelt and Roth-
schild (see [BR95], [BER96]), and in the first author’s work ([Hu94], [Hu94T]).
In [CJ96], Chern and the second author showed a related result: Any local map
f , which maps a piece of ∂D into ∂B

n+1, extends along any path γ ⊂ D as a
locally bimeromorphic map, where D is a bounded domain with real analytic
spherical boundary.

The purpose of this paper is to study the global holomorphic extension of a
local map between algebraic domains, i.e, domains whose boundaries are locally
defined by real polynomials. Our first result is the following theorem:

Theorem 1.1. Let D, D′ ⊂ C
n+1 be bounded domains with algebraic smooth

boundaries ∂D and ∂D′. Let a ∈ ∂D, and Ua a neighborhood of a in C
n+1. Let

f : Ua → f(Ua) ⊂ C
n+1 be a biholomorphic map such that f(Ua ∩ ∂D) ⊂ ∂D′.
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Suppose that D′ is strongly pseudoconvex and ∂D is connected. Then, for any
given path γ(t) ∈ D, 0 ≤ t ≤ 1, with γ(0) = a, the local map

(1.1) f extends holomorphically along γ.

One of the main points of Theorem 1.1 is that the strong pseudoconvexity on
∂D is not required. Nevertheless, the condition of strong pseudoconvexity on the
target space D′ is important. (However, see Remark 6.1 (b)). In fact, the local
map, (z, w) �→ (z,

√
w), from a small piece of ∂B

2 near (0, 1) into the boundary
of the egg domain {|z|2 + |w|4−1 = 0}, cannot be extended along some paths in
∂B

2. Also, it should be mentioned that the algebraicity assumption in Theorem
1.1 is crucial. In fact, Burns and Shnider [BS76] had examples showing that there
are many local biholomorphic maps between the ball and a certain real analytic
(strongly pseudoconvex) spherical domain D which cannot be holomorphically
extended along some path γ inside ∂B

n+1.
If the path γ ⊂ ∂D and if one puts the strong pseudoconvexity on ∂D, (1.1)

was already proved (without the algebraic condition) in the following special
cases by Pinchuk and Vitushkin-Ezhov-Kruzhilin: (i) ∂D′ = ∂B

n+1 and ∂D
is spherical real analytic [Pi78]; and (ii) both ∂D and ∂D′ are non-spherical
strongly pseudoconvex real analytic [Pi78], [VEK86]. By the way, the proofs
of those two results were completely separated, depending on the non-spherical
and spherical cases. However, our method, different from theirs, deals with both
cases simultaneously.

As an application of Theorem 1.1, we obtain immediately the following Rie-
mann Mapping Theorem in the algebraic category. Recall that a real analytic
domain D is called a spherical domain if for any point p ∈ ∂D, there is an open
neighborhood U of p in C

n+1 and a biholomorphic map Φ defined over U such
that Φ(U ∩ ∂D) ⊂ ∂B

n+1 and Φ(U ∩D) ⊂ B
n+1.

Theorem 1.2. Any bounded algebraic spherical domain D ⊂ C
n+1 must be

biholomorphic to the unit ball B
n+1.

The surprising feature of Theorem 1.2 is that there is no need to impose any
topological restriction on D. (See also Theorem 1.2′ stated at the end of the
paper). Meanwhile, there are many bounded real analytic spherical domains in
C

n+1, which are not biholomorphic to the ball B
n+1, by the famous examples of

Burns and Shnider [BS76]. Apparently, the theorem fails in the setting of one
complex variable case. To our knowledge, we do not know any other versions of
the Riemann mapping theorem which hold for algebraic domains but not for real
analytic domains ([Wo77], [Ro80], [CJ96]). (The reader may like to compare this
theorem with certain other work done in [BHR96], [E96], where the algebraicity
also plays an essential role.)

As some other applications of Theorem 1.1, we give here the following two
more corollaries:
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Corollary 1.3. Let D, D′, Ua, f, γ be as in Theorem 1.1. If, in addition, ∂D is
also strongly pseudoconvex, then the extension f along γ is locally biholomorphic.
Moreover, if γ(t) ∈ D for 0 < t < 1, then

(1.2) f(γ(t)) ∈ D′ for 0 < t < 1.

Corollary 1.4. Let D, D′, Ua, f be as in Corollary 1.3. (i) If, in addition, D is
simply connected, the local map f then extends to a covering map f : D → D′.
(ii) If, in addition, D and D′ are both simply connected, then the local map f
extends to a biholomorphic map f : D → D′.

Our proof of Theorem 1.1 is based on the technique of Segre family theory
(cf. [We77], [We78], [DFY94], [Hu94], [BER96], [Hu96]). First, by a celebrated
theorem of Webster [We77], the map under study is algebraic. However, apriori,
the branch locus E of f may cut D. Consider γ ⊂ ∂D and suppose that f
extends along γ(t) for 0 ≤ t < c ≤ 1. Suppose that p = γ(c) ∈ ∂D ∩ E . There
are two different cases that we have to study separately. The first case is when E
cuts only the boundary ∂D at p but not inside D. Then, f extends inside D near
p and we can extend the graph of f in terms of Segre varieties over the space
outside of D near p. Using the strong pseudoconvexity of ∂D′, we then make
the desired single-valued extension. The second case is when E cuts ∂D in both
sides at p. By passing to a nearby point, we can then assume that p is a smooth
point of E and E is transversal to ∂D at p, too. Therefore, the fundamental
group of U −E is isomorphic to Z and is thus generated by a simple loop around
E . Using the Segre variety Qz, we can connect any two branches of f so that
they are forced to be the same by the strong pseudoconvexity on ∂D′.

In this paper, we denote by z the complex conjugate of a complex number
z. For a set A ⊂ C

n+1, we denote by A its topological closure. For a point
p ∈ C

n+1, we denote by Up and Pp small neighborhoods of p in C
n+1 with

Pp ⊂⊂ Up. Let γ be a path in C
n+1 and h a holomorphic map defined near

γ(0). In all that follows, we say that h extends holomorphically along γ if there
are finitely many pairs {Ui, hi}k−1

i=0 such that (a) each Ui is geometrically convex,
hi is holomorphic over Ui and h0 = h near a small neighborhood of γ([0, 1/k]);
(b) for 0 ≤ i ≤ k−1, γ([i/k, (i+1)/k]) ⊂⊂ Ui; and (c) hi = hi+1 over Ui∩Ui+1.
For simplicity, after defining some notations on the source space, we add ‘primes’
for the corresponding notations on the target space, unless stated explicitly.

2. More notation, definitions and preliminaries

Let D be as in Theorem 1.1. For any point p ∈ ∂D, we can choose a real-
valued real polynomial r and a small open ball Up centered at p such that
∂D ∩ Up = {z ∈ Up : r(z, z) = 0} and dr|∂D∩Up

�= 0. For any z ∈ Up, the
subvariety in Up

(2.1) Qz := {w ∈ Up | r(w, z) = 0}
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is called the Segre variety of ∂D associated to z. Shrinking Up and choosing
another sufficiently small ball Pp centered at p, we may assume that for each
z ∈ Pp, Qz is a connected complex submanifold and Up − ∂D has two simply
connected components.

For any z ∈ Pp, we define a subvariety Az := {w ∈ Pp : Qw = Qz}. Since ∂D
is compact and real analytic, it is known [DFY94] that when Pp is sufficiently
small,

(2.2) #Az <∞, ∀z ∈ Pp.

Shrinking Pp again, we can find a smooth conjugating operator (cf. [DFY94],
[Hu96]) R : Pp → Up, such that z∗ := R(z) ∈ Qz, R2(z) = z, R(Pp) ⊂⊂ Up,
R reverses the sides of ∂D, and R

∣∣
∂D

= id. In what follows, we always arrange
the pair {Up, Pp} such that the above mentioned properties hold.

For any z ∈ Pp \ D, we denote by Qc
z the irreducible component of Qz ∩ D

which contains the point z∗.
Consider the biholomorphic map f : Ua → f(Ua) with f(Ua ∩ ∂D) ⊆ ∂D′ as

in Theorem 1.1. Since ∂D and ∂D′ are algebraic, by a result of Webster [We77],
f is an algebraic map. Hence its graph Γf := {(z, f(z)) | z ∈ Ua} extends to an
irreducible complex (n + 1)-dimensional projective algebraic subvariety

(2.3) V ⊂ P
n+1 × P

n+1.

Denote by π and π′ the restriction of the following natural projections to V,
respectively:

P
n+1 × P

n+1 → P
n+1, (z, w) �→ z, and P

n+1 × P
n+1 → P

n+1, (z, w) �→ w.

Notice that there are complex algebraic subvarieties E , S ⊂ C
n+1 such that

for any path γ ⊂ C
n+1 with γ(0) = a and γ ∩ E = ∅, f extends holomorphically

along γ, and f extends biholomorphically along γ when γ ∩ (E ∪ S) = ∅. Since
there is a certain subvariety E∗ of V such that the restrictions of π and π′ to
V \ E∗ are locally biholomorphic, it can be easily seen that for any irreducible
subvariety E in P

n+1 with positive codimension, π′(π−1(E)) is also a subvariety
of P

n+1 with positive codimension.

Let p̃ ∈ ∂D such that f : Up̃ → f(Up̃) is holomorphic. Write z′ = f(z), z′ =
f(z) = f(z). When Up̃ is sufficiently small, we have

(2.4) r′(f(z), f(w)) = u(z, w)r(z, w), ∀z, w ∈ Up̃,

with u holomorphic in (z, w). Hence for any w ∈ Up̃, we see the following
well-known invariant property [We77]

(2.5) f(Qw) ⊆ Q′
f(w).
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Next, let p ∈ ∂D, R, Pp and Up be as introduced before. Suppose that
U ⊂⊂ Pp is an open subset such that U ∩ ∂D �= ∅ and f : U → f(U) ⊂ C

n+1

is holomorphic. (Notice here that f is not assumed apriori to be holomorphic
over Up). Let θ(t) ∈ Pp, 0 ≤ t ≤ 1, be a path with θ(0) ∈ U ∩ ∂D. Suppose that
f extends along both paths θ and θ∗ := R(θ) holomorphically. Denote by fθ(t)

and fθ∗(t) for the germs of the holomorphic continuation of f along θ and θ∗ at
the points θ(t) and θ∗(t), respectively. For simplicity, we also occasionally write
fθ := fθ(t) and f(θ(t)) := fθ(t)(θ(t)), when there is no risk of causing confusion.
For each point z ∈ C

n+1, we write, in what follows, Oz or O(z) for a small ball
centered at z, whose size may be different in different contexts.

Lemma 2.1. With the above notation and assumption, suppose further that θ(t)
(0 ≤ t ≤ 1) is a Jordan path. Then one has the following invariant property for
the extension of f :

(2.6) fθ∗(t)(Oθ∗(t) ∩Qθ(t)) ⊆
Q′

f(θ(t)); and fθ(t)(Oθ(t) ∩Qθ∗(t)) ⊆ Q′
f(θ∗(t)), 0 ≤ t ≤ 1.

Proof of Lemma 2.1. As above, write ρ and ρ′ for the algebraic defining functions
of D and D′ (near p and p′), respectively. Let Ω(θ) ⊂ Pp be a sufficiently small
simply connected neighborhood of the open arc θ((0, 1)) such that fθ extends
holomorphically to Ω(θ) and fθ∗ extends holomorphically to R(Ω(θ)).

Consider the function: Σ(z, w) := ρ′(fθ(z), fθ∗(w)), where

(z, w) ∈M∗ = (Ω(θ)×R(Ω(θ))) ∩M.

Here M := {(z, w) : ρ(z, w) = 0} can be assumed to be a connected complex
manifold with coordinates in (z, w). Then Σ is clearly a single-valued function
holomorphic in (z, w). (2.5) is now equivalent to saying that Σ(z, w) ≡ 0, when
(z, w)(∈ M∗) ≈ (θ(t), θ∗(t)) with t << 1. Hence, it follows that Σ(z, w) :=
ρ′(fθ(z), fθ∗(w)) ≡ 0 over the connected neighborhood of {(θ(t), θ∗(t)) : t ∈
(0, 1)} in M∗. This is equivalent to saying that (2.6) holds for 0 ≤ t < 1.
Passing to the limit, we similarly prove that it also holds at t = 1. The proof is
complete. �

Finally we state a quite standard result whose proof, for example, can be
found in [We 79]. Notice that Lemma 2.2 is the only place we use the restriction
of the strong pseudoconvexity (rather than the weak pseudoconvexity) for the
proof of Theorem 1.1.

Lemma 2.2. Let p′ ∈ ∂D′ be a strongly pseudoconvex point and U ′
p′ a suffi-

ciently small neighborhood of p′ in C
n+1 as introduced before. Then for any two

points w1, w2 ∈ P ′
p′ , Q′

w1
= Q′

w2
holds if and only if w1 = w2.
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3. Some local properties of the extension of f

Lemma 3.1. Let D, D′, f, Ua be as in Theorem 1.1. Let γ(t) ∈ ∂D, 0 ≤ t ≤ 1,
be a path with γ(0) = a. Suppose that f extends along γ(t) ∈ ∂D, 0 ≤ t < c ≤ 1,
holomorphically and that f(γ(tj))→ p′ ∈ ∂D′ for some sequence tj ↗ c. Write
p := γ(c). Then for any ε > 0, there is a certain small constant δ > 0 such that
for any path σ(t) ∈ B(p, δ) − E ∪ S ∪ R(E ∪ S), 0 < t ≤ 1, with σ(0) = γ(c1)
for some 0 < c1 < c, the extended map f along σ (with the initial value fγ(c1))
takes value in B′(p′, ε).

Proof of Lemma 3.1. First, by the monodromy theorem and some simple topo-
logical arguments, it is clear that we can assume, without loss of generality, that
the σ in the lemma is a Jordan path.

Suppose that the above statement is not true. For any ε > 0 with B′(p′, ε) ⊂⊂
P ′

p′ , then when δ > 0 is sufficiently small, one can find easily a Jordan path
σεδ

(t) ∈ B(p, δ)−E∪S∪R(E∪S) (0 < t ≤ 1) such that (a) fσεδ
(σεδ

(t)) ∈ B′(p′, ε)
for 0 ≤ t < 1, (b) σεδ

(0) = γ(tεδ
) for some tεδ

with 0 < tεδ
< c and γ(tεδ

) ∈ Pp,
and (c)

(3.1) fσεδ
(1)(σεδ

(1)) ∈ ∂B′(p′, ε),

where fσεδ
is the holomorphic extension of f (with initial value fγ(tεδ

)) along
σεδ

.
Since σεδ

((0, 1]) ∩ (E ∪ S ∪ R(E ∪ S)) = ∅, σ∗
εδ

((0, 1]) ⊂ Up − E ∪ S and f
extends along both σεδ

and σ∗
εδ

biholomorphically. By (2.5), we conclude that

(3.2) fσ∗
εδ

(1)(Qσεδ
(1) ∩Oσ∗

εδ
(1)) ⊆ Q′

f(σεδ
(1)).

Hence, it yields that π′(π−1(Q̂σεδ
(1))) ⊃ Q′

wεδ
with wεδ

= f(σεδ
(1)) ∈ ∂B(p′, ε).

Here, for z ≈ p, we use Q̂z to denote the following algebraic compactifica-
tion of Qz in P

n+1: Write the defining function r of ∂D near p as r(η, z) =∑N
α,|α|=0 aα(z)ηα with η = (η1, · · · , ηn+1). Then Q̂z = {[η1, · · · , ηn+2] ∈ P

n+1 :∑N
α=(α1,··· ,αn+1);‖α‖=0 aα(z)ηα1

1 · · · η
αn+1
n+1 η

N−‖α‖
n+2 = 0.}

Letting δ → 0 and letting wε be a limit point of {wεδ
}, it gives that π′ ◦

π−1(Q̂p) contains Q′
wε

. Notice that wε ∈ ∂B′(p′, ε) and π′ ◦ π−1(Q̂p) can only
have finitely many irreducible components (each of which has positive codi-
mension, by the previous observation.) Varying ε, we conclude that there are
infinitely many wεk

→ p′, such that wεk
∈ ∂B′(p′, εk), εk ↘ 0, and that all Q′

wεk

are the same near p. This contradicts (2.2). �

In order to prove Theorem 1.1, we need Lemma 3.2 below.

Lemma 3.2. Let p ∈ ∂D∩E, where E is a smooth complex hypersurface in Up

such that E intersects both sides of ∂D ∩Up. Write G = ∂D ∩E ∩Up. Then E
intersects ∂D transversally along an open dense subset of E ∩ ∂D.

Proof of Lemma 3.2. We first notice that ∂D is pseudoconvex. Indeed, let E and
S be as defined before. Then, we know that f extends locally biholomorphically
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along any path without cutting S∗ := E ∪ S. Clearly, S∗ has no open piece
inside ∂D, for ∂D is a compact real algebraic hypersurface. Hence S∗ ∩ ∂D has
real codimension at least 2 in ∂D. That is, ∂D \ S∗ is connected. Hence, ∂D
must be strongly pseudoconvex over ∂D \ S∗, for ∂D \ S∗ is locally equivalent
to its image in ∂D′, which we assumed to be strongly pseudoconvex. Therefore,
one can easily conclude that D is strongly pseudoconvex at points away from
∂D ∩ S∗, and is pseudoconvex at points in ∂D ∩ S∗.

Next, notice that the hypothesis indicates that E ∩ ∂D is of real codimension
1 in E, for ∂D separates E. (See [Ru80].) Since E ∩ ∂D is a real analytic set,
we see that E ∩ ∂D is smooth with real codimension 1 in E almost everywhere.

Let now q be a smooth point of ∂D ∩ E ∩ Up. Since D is pseudoconvex, we
can assume, by a result of Diederich-Fornaess [DF77], that D is defined near q

by a smooth function ρ∗ such that −(−ρ∗)2/3 is plurisubharmonic over D ∩Oq.
On the other hand, E ∩ ∂D has codimension 1 in E near q. Restricting

−(−ρ∗)2/3 to E ∩D near q and applying the Hopf lemma, we conclude that the
lower limit of the normal derivative, with respect to ∂D ∩ E, of −(−ρ∗|E)2/3

at q is non zero. This then infers that d|Eρ∗ �= 0 at q. Namely, E cuts ∂D
transversally at q. The proof of lemma 3.2 is thus complete. �

Remark 3.3. (a) For Lemma 3.1, the pseudoconvexity assumption of D′ (and
consequently, of D) is redundant. However, for Lemma 3.2, the pseudoconvexity
of D is crucial.

(b) When the r(z, z) in the proof of Lemma 3.1 is just assumed to be a smooth
real Nash algebraic function near p. Namely, assume that for a certain irreducible
non-trivial polynomial P (η, z;X), one has P (η, z; r) ≡

∑
j aj(η, z)(r(η, z))j ≡ 0

with a0(η, 0) �≡ 0. Write a0 ≡
∑

α;‖a‖≤N bα(z)ηα. Then for any z ≈ p, the
compactification Q̂z of Qz is understood as the variety

{[η1, · · · , ηn+2] ∈ P
n+1 :

N∑
α=(α1,··· ,αn+1);‖α‖=0

bα(z)ηα1
1 · · · η

αn+1
n+1 η

N−‖α‖
n+2 = 0.}

Then the same argument shows that Lemma 3.1 holds also for domains which
are locally defined by smooth Nash algebraic functions.

4. Proof of Theorem 1.1

We now proceed to the proof of Theorem 1.1. We first consider the case when
γ ⊂ ∂D. Suppose that f extends along γ(t) for 0 ≤ t < c ≤ 1 holomorphically,
but f cannot extend across p := γ(c). We want to find a contradiction. Notice
that fγ(γ((0, c))) ⊂ ∂D′ and ∂D′ is compact. By Lemma 3.1, we can easily
conclude that fγ(γ(t)) has a limit, denoted by p′, as t→ c−. Also, we can choose
Up such that for any path θ with θ((0, 1]) ⊂ Up \ E ∪ R(E) and θ(0) ∈ γ((0, c)),
the holomorphic extension of f along θ takes value inside P ′

p′ .
Identify C

n+1 as an open subset of P
n+1 in the standard way. Define Vp ⊂⊂

C
n+1×C

n+1 to be the irreducible piece of V near (p, p′) containing the graph of
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f near (γ(t), f(γ(t))) with t(< c) ≈ c. Write Ep for the genuine branching locus
of the multiple-valued extension of f near p. Namely, write (Yp, σp,Vp) for the
normalization [Wh72] of Vp and write π̃ for the projection of Vp to its first copy
of C

n+1. Then

Ep = π̃(σp{x ∈ Yp : x is singular, or d|xσp is singular}).

We mention that Ep is of complex codimension one when it is not empty [Wh72].
We notice that p must belong to Ep. The proof of Theorem 1.1 will be carried
out in the following three steps.
Step 1. First, by the pseudoconvexity of D, Ep �⊂ D. We will verify in this
step that Ep ∩ Pp ∩ D ∩ O(p) �= ∅. Suppose not. Then the map f extends
holomorphically to Up ∩D.

For any point z ∈ Pp −
(
D ∪ Ep ∪ S ∪R(Ep ∪ S)

)
, we can find a Jordan path

θ(t) ∈ Pp −
(
D ∪ Ep ∪R(Ep)

)
for 0 < t ≤ 1 with θ(0) ∈ Pp ∩ γ((0, c)) and

θ(1) = z. Thus we get a path θ∗(t) := R(θ)(t) ∈ Up ∩ D − Ep for 0 < t ≤
1, with θ∗(0) = θ(0) = γ(t∗) and t∗ ∈ (0, c). The map f with initial value
fγ(t∗) can extend along both θ and θ∗ holomorphically. Thus by (2.5), we get
fθ∗(1)(Qc

θ(1) ∩ O(θ∗(1))) ⊆ Q′
f(θ(1)), i.e., fθ∗(1)(Qc

z ∩ O(z∗))) ⊆ Q′
w for some

w ∈ P ′
p′ . Define

(4.1) V∗ := {(z, w) | z ∈ Pp −D ∪ Ep ∪ S ∪R(Ep ∪ S),

w ∈ P ′
p′ and fθ∗(1)(Qc

z ∩O(z∗)) ⊆ Q′
w},

which can be easily verified to be a complex subvariety of complex dimension
n + 1. Here θ(t) runs through the space of all Jordan paths as described above.
Notice that fθ∗(1) is biholomoprhic near z∗ = R(z) by our arrangement of z.

Since f extends holomorphically along paths in Up∩∂D−Ep, this V∗ contains
the graph of f over (Pp \D) ∩O(z) for any z ∈ Up ∩ ∂D − Ep.

Write π∗ for the projection of V∗ to its z-component. We claim that π∗−1(z) =
{(z, w)} is a single point for any z ∈ Pp − D ∪ Ep ∪ S ∪ R(Ep ∪ S). In fact,
suppose π∗−1(z) contains two points η1 = (z, w1) and η2 = (z, w2) for some
z ∈ Pp − D ∪ Ep ∪ S ∪ R(Ep ∪ S). Since f is holomorphic on Up ∩ D, by the
above and (2.6), fθ∗(1)(Qc

z) ⊆ Q′
w1

and fσ∗(1)(Qc
z) ⊆ Q′

w2
for some paths θ∗ and

σ∗. Since both w1 and w2 are near p′ and since σ∗, θ∗ ⊂ D, the single value
property of f in D near p implies Q′

w1
and Q′

w2
have an open piece in common.

Hence, w1 = w2 by Lemma 2.2. This proves our claim.
We notice that from the way V∗ is defined,

(4.2) π(V∗) ⊇ Pp −D ∪ Ep ∪ S ∪R(Ep ∪ S).

Hence, we can define f(z) := w for any z ∈ Pp −D ∪ Ep ∪ S ∪R(Ep ∪ S), where
{(z, w)} = π−1(z). This implies that f is a well defined holomorphic map in
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Pp − D ∪ Ep ∪ S ∪ R(Ep ∪ S). Notice that f is bounded in Pp − D ∪ Ep ∪ S ∪
R(Ep ∪S). Since Ep ∪S ∪R(Ep ∪S) has Hausdorff codimension one and since D
is pseudoconvex of finite type, We then apply the removable singularity theorem
and the Lewy-type extension theorem (say, the Trepreau theorem) to infer that
f extends holomorphically to Pp.

Hence, Ep has to be empty near p. This is a contradiction.
Step 2. We will prove in this step that Ep can not cross Up ∩ ∂D at p. Suppose
not. Since Ep ∩ ∂D then must have Hausdorff codimension 1 in Ep and most
points there are smooth by Lemma 3.2, we can assume without loss of generality
that Ep is smooth near p and cuts ∂D transversally at p. Since Qp is tangent to
∂D at p, we hence see that by shrinking Pp if necessary Qz cuts Ep transversally
for any z ∈ Pp, too. Also, by nicely shrinking Up and Pp, we may assume that
the fundamental groups of Up \ Ep and Pp \ Ep are isomorphic to Z.

By applying the removable singularities theorem and Lemma 3.1, it suffices
to show that f is single-valued over Pp−Ep ∪γ([0, 1])∪S ∪R(Ep ∪γ([0, 1])∪S).

Given any z ∈ Pp − Ep ∪ γ([0, 1]) ∪ S ∪ R(Ep ∪ γ([0, 1]) ∪ S), let us take
a smooth Jordan path φ with φ(t) ∈ Pp − Ep ∪ R(Ep), 0 < t ≤ 1, φ(0) ∈
∂D ∩ γ((0, c)) and φ(1) = z. Take another Jordan loop σ with σ(t) ∈ Pp −
(Ep ∪ φ([0, 1]) ∪R(Ep ∪ φ([0, 1]))) for 0 < t < 1 and σ(0) = σ(1) = z. We
denote, as before, by fφ the holomorphic extension of f along φ(t), and fσ the
holomorphic extension of f along σ(t) with initial value fφ(1).

Apparently, it suffices to show that for any Jordan loop σ as above,

(4.3) fσ(0)(σ(0)) = fσ(1)(σ(1)).

Write the path φ∗(t) := R(φ)(t) ∈ Up − Ep (0 < t ≤ 1) with φ∗(0) = φ(0)
and φ∗(1) = z∗ ∈ Qz. Consider the loop σ∗(t) := R(σ)(t) ∈ Up − Ep with
σ∗(0) = σ∗(1) = z∗ ∈ Qz, 0 ≤ t ≤ 1. We also denote by fφ∗ the holomorphic
extension of f along φ∗(t), and by fσ∗ the holomorphic extension of f along σ∗(t)
with initial value fφ∗(1). Applying Lemma 2.1 to the Jordan path φ ∪ σ([0, t]),
we first see that

(4.4) fσ∗(t)(Oσ∗(t) ∩Qσ(t)) ⊆ Q′
f(σ(t)).

for t < 1. Passing to the limit, we see (4.4) holds also for t = 1. Recall
z = σ(0) = σ(1).

If we can show that fσ∗(0)(Oz∗ ∩Qz) and fσ∗(1)(Oz∗ ∩Qz)

(4.5) determine the germ of the same subvariety,

then from (4.4), it follows that Q′
f(σ(0)) = Q′

f(σ(1)). By Lemma 2.2, we get (4.3).
This would imply that f is single valued in Pp\Ep∪S∪γ([0, 1])∪R(Ep∪γ([0, 1])∪
S). Hence, to get a contradiction, it suffices to prove (4.5).

By Lemma 3.2, Qz intersects Ep transversely at some point u ∈ Qz ∩Ep ∩Up.
Thus there is a loop µ in Qz − Ep such that µ represents the generator of the
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homotopic group of Up−Ep with the base point z∗. Moreover, there is an integer
m such that mµ is homotopically equivalent to σ∗. For simplicity, we still use µ
to denote mµ. Denote, as before, by fµ(t) the holomorphic extension of f along
µ(t), 0 ≤ t ≤ 1, such that fµ(0) = fφ∗(1).

Notice that µ(t) ∈ Qz holds for all t and the subvariety Qz is independent of t.
By the following persistent property of the holomorphic continuation, we easily
see that the subvariety fµ(t)(O(µ(t)) ∩Qz)) is always contained in Q′

f(µ(0)).

Fact: Let S1 and S2 be two complex hypersurfaces in C
n and let F be a multiple-

valued holomorphic map defined near S1. Suppose that the genuine branching
locus of F does not contain S1. Suppose that for a point p ∈ S1, a certain branch
F ∗ of F maps O(p) ∩ S1 into S2. Let γ be a path inside S1 with γ(0) = p (not
cutting the branching locus of F ). Let F ∗∗ be the branch of F near γ(1) by
holomorphically continuing F ∗ along γ to γ(1). Then F ∗∗(Oγ(1) ∩ S1) ⊆ S2.

The above fact gives that fµ(0)(Oz∗ ∩Qz) and fµ(1)(Oz∗ ∩Qz) determine the
same subvariety. Since fµ(0) = fσ∗(0) and fµ(1) = fσ∗(1) near the point z∗, we get
(4.5) and thus the property that f(µ(0)) = f(µ(1)). That is, f is single-valued
near p (away from a thin set). This contradicts the existence of the non-triviality
of Ep near p. Therefore, Step 1 and Step 2 show that f does extend across γ,
whenever γ ⊂ ∂D.

Step 3. By what we did above, we see that for each γ ⊂ ∂D with γ(0) = a, f
extends holomorphically along γ. In this step, we will show that this is the case
even if γ ⊂ D. Write fj = (f (1)

j , ..., f
(n+1)
j ) with {fj}Nj=1 all possible extensions

by applying paths inside ∂D, where N has to be finite by the algebraicity of f .
Consider the following symmetric functions

gk(z, X) := (X − f
(k)
1 (z)) · · · (X − f

(k)
N (z)), 1 ≤ k ≤ n + 1,

for any z ∈ ∂D. Write

gk(z, X) = XN + ak
1(z)XN−1 + ... + ak

N−1(z)X + ak
N (z),

Obviously, by the Hartogs theorem, each coefficient is holomorphic over D. Now,
we can construct the graph Vk of fk over D by using the above equation:

Vk = {(z, X) ∈ D × C : XN + ak
1(z)XN−1 + ... + ak

N−1(z)X + ak
N (z) = 0}.

Notice that the number of points of each fiber, counting multiplicity, of Vk is
also N . Suppose (1.1) is not true. For a certain k, the genuine branching locus
of Vk is not empty and thus must be of codimension 1. Therefore, it hits the
boundary ∂D. This is obviously a contradiction to what we obtained in Step 1
and Step 2. The proof of Theorem 1.1 is complete. �
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5. Deformation of a path

Let us briefly recall the Morse theory [Hir76]. Let M be a smooth (real)
manifold of dimension m with smooth boundary, which is defined by the smooth
function ρ. Namely, d∂Mρ �= 0, ρ(∂M) = 0 and ρ(M \ ∂M) < 0. Let Ma :=
ρ−1(a) = {x ∈M : ρ(x) = a}, where a ≤ 0. A critical point p ∈M of ρ is called
non-degenerate if the Hessian ρ∗∗ is non-degenerate, i.e., det( ∂2ρ

∂xi∂xj (p)) �= 0,
where (xi) is a local coordinate system. The index of ρ∗∗, over TMp, is defined
to be the maximum dimension of the subspaces of TMp on which ρ∗∗ is positive.

Theorem 5.1. ([Hir76, pp 160, Theorem 3.3]) Let {pj}kj=1 be a finite set
of critical points of ρ with indices {λj}kj=1. Assume that ρ(pj) = c. Suppose
that for a certain small ε, Xc,ε := ρ−1([c − ε, c + ε]) is compact and contains
no critical points of ρ other than {pj}. Then there are disjoint k λj-cells Dj ⊂
Xc,ε \M c−ε such that ∂Dj ⊂ M c+ε, and there is a deformation retraction of
Xc,ε onto M c+ε ∪j Dj.

Here, by a k-cell in M , we mean the image of a certain embedding of the
closed unit k-ball of R

k into M .
To prove Corollary 1.3, we need the following lemma, which may be interesting

in its own right.

Lemma 5.2. Let D ⊂ C
n+1 be a bounded pseudoconvex domain with smooth

boundary. Let γ(t) ∈ D be a path, 0 ≤ t ≤ 1, such that both end points
γ(0), γ(1) ∈ ∂D. Then γ(t) can be deformed, by fixing the initial and termi-
nal points and keeping inside D, into a path γ∗ ⊂ ∂D.

Proof of Lemma 5.2. Clearly, without loss of generality, we may assume that D
is bounded strongly pseudoconvex. It is well known that there exists a smooth
strongly plurisubharmonic defining function ρ of D such that all critical points
of ρ are non-degenerate in D. (This can be easily proved using the smooth
approximation of bounded functions by Morse functions on compact sets of D).
Clearly, ρ has no critical points near ∂D.

Since ρ is strictly plurisubharmonic, all of its non-degenerate critical points
have index at least n + 1 ≥ 2.

Now we write all the critical points of ρ inside D as: P0, P1, ..., PT , where
each Pj is a finite set in ρ−1(aj) for some aj with a0 < a1 < a2 < ... < aT < 0.
Write δ = minj{|aj+1 − aj |/4, |aT |/4} and write ξ(γ) = mintρ(γ(t)). Without
loss of generality, we can assume that ξ(γ) > a1 − δ and T ≥ 1.

Let l > 0 be such that ξ(γ) ∈ [al − δ, al + δ]. We then claim that γ can be
homopotically deformed (relative to its end points) into a path γ∗ with ξ(γ∗) =
al+1+δ. Indeed, by Theorem 5.1, there is a deformation retraction from ρ−1([al−
δ, 0]) to ρ−1([al + δ, 0]) ∪j Dj , where the mutually disjointed D′

js are certain
embedded λj-cells with λj ≥ 2, Dj ⊂ ρ−1([al + δ, al − δ)) and ∂Dj ⊂ Mal+δ.
Apparently, we can assume that γ is smooth and thus Dj \ (∂Dj ∪ γ∗) �= ∅. For
each j, take qj ∈ Dj \(∂Dj∪γ∗). Notice that ρ−1([al +δ, 0])∪j (Dj \{pj}) can be
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homotopically retracted to ρ−1([al + δ, 0]) ∪j ∂Dj = ρ−1([al + δ, 0]). Therefore,
combining these deformations with γ, we see that γ can be deformed into a path
γ∗ with ξ(γ∗) = al + δ. Applying the easy case of Theorem 5.1 (the case with
empty critical points), we can further assume that ξ(γ∗) = al+1 − δ if T > 1.
This completes the proof of the claim.

Finally, an inductive use of the above argument shows that γ can be deformed
into a tubular neighborhood ρ−1([0, aT + δ]) of ∂D and thus ∂D. �

6. Proof of Theorem 1.2

Proof of Corollary 1.3. The local biholomorphic property follows by applying
Theorem 1.1 to f and f−1. It remains to prove (1.2). Suppose (1.2) is not true.
Then there is some c, 0 < c ≤ 1, such that f(γ(t)) ∈ D′ for 0 < t < c but
f(γ(c)) ∈ ∂D′.

Denote by γ′(t) := f(γ(ct)), 0 ≤ t ≤ 1, the pushforward path. Then
γ′(0), γ′(1) ∈ ∂D′ and γ′(t) ∈ D′ for 0 < t < 1. By Lemma 5.2, the path
γ′ can be deformed, via a continuous family of paths {γ′

s}s into a path γ∗ ⊂ ∂D′

with γ∗(0) = γ′(0) and γ∗(1) = γ′(1). Here γ′
s(0) = γ′(0), γ′

s(1) = γ′(1) and
γ′

s(t) ∈ D
′
. Consider the local inverse f−1 near a′ := f(a). Since ∂D is strongly

pseudoconvex, we can apply Theorem 1.1 to extend f−1 along each γ′
s. Since the

extension of f−1 along γ∗ takes the value in ∂D, by the monodromy theorem,
we get that γ(c) ∈ ∂D, contradicting the above assumption. �

Proof of Corollary 1.4. (i) When D is simply connected, by Corollary 1.3, f
extends to a locally biholomorphic map f : D → D′. Since f(∂D) ⊂ ∂D′, f
must be a proper map. Hence, f is a covering map. (ii) follows from (i).

Proof of Theorem 1.2. Since ∂D is spherical, there exists a local biholomorphic
map f from ∂B

n+1 to ∂D. From Corollary 1.4(i), f extends to a universal
covering map f : B

n+1 → D. Hence, D is biholomorphic to B
n+1/Γ, where

Γ ⊂ Aut(Bn+1) is isomorphic to the deck transformation group of the above
mentioned covering f . By the properness of f , we see that Γ is finite. However,
by a classical theorem of E. Cartan, it is known that any finite subgroup of
Aut(Bn+1) must have a common fixed point. (See [Ru80] [BS77], for example).
This contradicts the smoothness of D. �

Remark 6.1. (a) Taking into consideration of Remark 3.3 (b), by exactly the
same argument in the paper, it is clear that Theorem 1.1 and Theorem 1.2
also hold when D and D′ are merely assumed to be bounded smooth Nash
algebraic domains, those which can be locally defined by (smooth) Nash algebraic
functions, in the sense of Remark 3.3 (b).

(b) By investigating the proof, one sees easily that Theorem 1.1 also holds
when D′ is just assumed to be weakly pseudoconvex but with the following
geometric property: For any p′ ∈ ∂D′, the A′

z′ as defined in (2.2) is single-
valued whenever z′ ≈ p′. Hence, Theorem 1.2 also holds in the following more
general setting:
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Theorem 1.2′. Let D be a bounded Nash algebraic domain (in the sense of
Remark 3.3 (b)) such that (i) ∂D is connected and has at least one spherical
point; (ii) for any p ∈ ∂D, the Az defined as in (2.2) is single valued for z ≈ p.
Then D is biholomorphic to the ball.

Indeed, let D be as above and let a ∈ ∂D be a spherical point. Then there
is a local biholomorphic map f defined near a such that f maps ∂D near a into
∂B

n+1. By the argument in the proof of Lemma 3.2, it follows that D must
be pseudoconnvex. Consider the extension of f−1. We then also similarly show
that D is covered by the ball and thus must be biholomorphic to the ball.
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