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Abstract

We consider holomorphic mappings sending a given Levi-nondegenerate pseudoconcave hypersurface M

in C
n+1 into a nondegenerate hyperquadric of the same signature in PC

N+1 and show that if M is
sufficiently close to a hyperquadric in a certain sense, then any two such mappings differ only by an auto-
morphism of the hyperquadric.
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1. Introduction

It was discovered by Poincaré [22] that a local non-constant holomorphic mapping sending
a piece of the unit sphere S in C

2 into itself must in fact be a global holomorphic automor-
phism of CP

2 (i.e. a projective linear map) preserving S. Almost fifty years later, Alexander [1]
completed Poincaré’s program along these lines in the equi-dimensional case, by showing that
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a non-constant holomorphic map sending an open piece of the unit sphere S in C
n into S for any

n � 2 is also an automorphism of CP
n preserving S.

Webster [25] first obtained a similar rigidity result for holomorphic mappings (or sufficient
smooth CR mappings) sending a piece of the unit sphere Sn in C

n+1 into the unit sphere SN

in a different complex space C
N+1 with N = n + 1 � 3. Cima and Suffridge in [5] conjectured

that the just mentioned Poincaré–Alexander–Webster rigidity property holds for any C2-smooth
non-constant CR map, provided that the codimension N − n < n. This was verified by Faran
in [11] when the map is real analytic. Forstneric’s reflection principle in [12] (see also [6]) shows
that it holds when the map is CN−n+1-smooth. In [15], this rigidity was finally established for
any non-constant C2-smooth CR map. The bound N < 2n is optimal as can be seen by examples
such as the so-called Whitney map (see e.g. Example 1.1 in [8]). In fact, there are polynomial
maps of arbitrarily high degree k sending the unit sphere Sn ⊂ C

n+1 into a sphere SN ⊂ C
N+1

with N depending on n and k (see D’Angelo [7]). The reader is also referred to [10,16,13,17] for
a classification of all rational maps in the case n = 1,N = 2, and in the case N � 3n − 4.

The situation is quite different in the case of maps between nondegenerate pseudoconcave
hyperquadrics. An immediate benefit of the Lewy extension theorem (see Lewy [20]; see also
Hörmander [14, Theorem 2.6.13]) in this consideration is that one needs only to deal with holo-
morphic maps instead of more general CR maps. More recently, it was shown in [3] that for
such hyperquadrics there is no restriction on the codimension N − n for the analogous rigidity
phenomenon to hold. In the present paper, we study a more general situation where the source
manifold is not necessarily a hyperquadric. We consider holomorphic mappings sending a given
Levi-nondegenerate pseudoconcave hypersurface M in C

n+1 into a nondegenerate hyperquadric
of the same signature in CPN+1. We show that if M is sufficiently close to a hyperquadric in
a certain sense (i.e. M can be embedded with low codimension in a hyperquadric of the same
signature), then any two such mappings differ only by an automorphism of the hyperquadric (see
Theorem 1.1 for the precise formulation). Previous results along these lines in the strictly pseu-
doconvex case include [25,8], and in the general Levi nondegenerate case [9]. The proof of our
main result relies on the early work in the study of Pseudo-Hermitian geometry (see [24,25,19]
and the references therein) and, in particular, the more recent derivations in [8] and [9].

Let M ⊂ Cn+1 be a smooth hypersurface and p ∈ M . Assume that M is Levi nondegenerate
at p and L : Cn ×C

n → C a representative of the Levi form of M at p. If we let e− and e+ be the
number of negative and positive eigenvalues of L, respectively, then l(M,p) := min(e−, e+) �
n/2 is independent of the choice of representative L of the Levi form. We shall refer to l(M,p)

as the signature of M at p. If M is connected and Levi nondegenerate at every point, then l :=
l(M,p) is constant and we shall say that M has signature l.

We let QN
l ⊂ CP

N+1 denote the standard hyperquadric of signature 0 � l � N/2 given in
homogeneous coordinates [z0 : z1 : . . . : zN+1] by

−
l∑

j=0

|zj |2 +
N+1∑

k=l+1

|zk|2 = 0. (1.1)

(Thus, the superscript in QN
l represents the CR dimension and the subscript represents the sig-

nature.) We observe that QN
l is a connected hypersurface of CR dimension N , which is Levi

nondegenerate at every point. Its signature is l. We denote by Aut(QN
l ) the subgroup of biholo-

morphic mappings of CP
N+1 preserving QN

l . It is well known [4] that Aut(QN
l ) can be identified

with the group of invertible (N + 2) × (N + 2) matrices that preserve the quadratic form on the
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left-hand side of (1.1) (up to sign if l = N/2). We also note that if 2l � N0 < N , then the standard
linear embedding L : CP

N0+1 → CP
N+1, given by

L
([z0 : . . . : zN0+1]

) := [z0 : . . . : zN0+1 : 0 : . . . : 0], (1.2)

satisfies L(Q
N0
l ) ⊂ QN

l .
To formulate our main result, we shall need one more definition. If M ⊂ C

n+1 is a real hy-
persurface, then we shall say that M is locally biholomorphically equivalent to the hyperquadric
Qn

l at p ∈ M if there are p′ ∈ Qn
l , open neighborhoods U ⊂ C

n+1 and V ⊂ CP
n+1 of p and p′,

respectively, and a biholomorphism H :U → V such that H(M ∩U) = Qn
l ∩V and H(p) = p′.

Our main result is the following.

Theorem 1.1. Let M ⊂ C
n+1 be a connected real-analytic Levi-nondegenerate hypersurface of

signature l � n/2. Moreover, if l = n/2, then assume that M is not locally biholomorphically
equivalent to the hyperquadric Qn

n/2 at any point of M . Suppose that there is an open connected

neighborhood U of M in Cn+1 and a holomorphic mapping f0 :U → CPN0+1 with f0(M) ⊂
Q

N0
l such that f0(U) �⊂ Q

N0
l . If N � N0 and f :U → CP

N+1 is a holomorphic mapping with
f (M) ⊂ QN

l , f (U) �⊂ QN
l , and N0 −n < l, then there is T ∈ Aut(QN

l ) such that f := T ◦L◦f0,
where L denotes the standard linear embedding given by (1.2).

The conclusion of Theorem 1.1 with the additional assumption that M is the hyperquadric Qn
l

(and N0 = n, f0(z) ≡ z) is contained in Theorem 1.6(i) of [3]. If the condition N0 − n < l is
replaced by N0 + N < 3n, then the conclusion of Theorem 1.1 follows from the work [8] (in
the strictly pseudoconvex case l = 0) and [9] (in the general case). We conclude the introduction
with a number of remarks.

Remark 1.2. We point out that if M ⊂ C
n+1 is a merely smooth (C∞) connected Levi-

nondegenerate hypersurface of signature l > 0 and F :M → QN
l ⊂ CP

N+1 a smooth CR map-
ping, then F is the restriction to M of a holomorphic mapping f :U → CP

N+1, where U is
an open neighborhood of M in C

n+1. Indeed, this follows essentially from a classical result of
Lewy [20] (see also Theorem 2.6.13 in [14]), since the Levi form of M has eigenvalues of both
signs at every point. If, in addition, f (U) is not contained in QN

l , then M is real-analytic. To
see this, let p0 be a point on M and ρ = 0 a real-analytic defining equation for QN

l (in some
local chart) near f (p0). It follows that M is contained, near p0, in the real-analytic variety V

defined by ρ ◦ f = 0. Since f (U) �⊂ QN
l , it follows that ρ ◦ f �≡ 0 and hence V is non-trivial.

The real-analyticy of M now follows from a theorem of Malgrange [21]. Hence, the conditions
in Theorem 1.1 that M is real-analytic and f0, f are holomorphic can be weakened to M being
smooth and f0, f being CR with the appropriate conditions on their holomorphic extensions.

Remark 1.3. We also remark that if M ⊂ C
n+1 is a connected real-analytic Levi-nondegenerate

hypersurface of signature l and M is locally biholomorphically equivalent to the hyperquadric
Qn

l at some point p ∈ M , then M is locally biholomorphically equivalent to Qn
l at every point

in M . Indeed, this follows from the fact that M is locally biholomorphically equivalent to Qn
l at p

if and only if the CR curvature of M (see below) vanishes identically in an open neighborhood
of p in M . The conclusion above now follows from the real-analyticy of the CR curvature of M

and the connectedness of M . Hence, the additional assumption in Theorem 1.1 when l = n/2
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that M is not locally biholomorphically equivalent to Qn
n/2 at any point of M can be replaced by

the seemingly weaker condition that M is not locally biholomorphically equivalent to Qn
n/2 at

one point in M .

Remark 1.4. If M is locally biholomorphically equivalent to Qn
n/2 at some point p ∈ M (and

hence at every point of M by Remark 1.3), then the conclusion of Theorem 1.1 does not hold
in general. However, the situation can be reduced to one considered in [3] as follows. Under the
assumption above, we may take N0 = n in the statement of Theorem 1.1 and, by shrinking U if
necessary, we may assume that f0 :U → CPn+1 is a biholomorphism (onto its image) sending
M into Qn

n/2. Let f be as in the statement of Theorem 1.1. By applying Theorem 1.6 in [3] to the

mapping f ◦ f −1
0 , we conclude that f = T ◦ L ◦ T0 ◦ f0, where T and L are as in Theorem 1.1

and T0 is either the identity in CP
n+1 or the flip

[z0 : z1 : . . . : zn : zn+1] �→ [zn+1 : zn : . . . : z1 : z0]. (1.3)

We note that it is not always possible to take T0 to be the identity in this situation.

Remark 1.5. If there is an open connected neighborhood U of M in C
n+1 and a holomorphic

mapping f0 :U → CP
N0+1 with f0(M) ⊂ Q

N0
l such that f0(U) �⊂ Q

N0
l , then necessarily N0 � n.

Indeed, if N0 < n, then the rank of f0 would be � n at every point of M . Theorem 5.1 in [2]
would then imply that f0(U) ⊂ Q

N0
l contradicting the hypothesis above.

2. Two basic lemmas

In this section, we shall formulate two lemmas that are key ingredients in the proof of
Theorem 1.1. The first lemma was proved in [15] and [9], [15, Lemma 3.2]. For the reader’s
convenience, we reproduce its statement here.

Lemma 2.1. Let k, l, n be nonnegative integers such that 1 � k < n. Assume that g1, . . . , gk ,
f1, . . . , fk are germs at 0 ∈ C

n of holomorphic functions such that

k∑
i=1

gi(z)fi(z) = A(z, z̄)

(
−

l∑
i=1

|zi |2 +
n∑

j=l+1

|zj |2
)

, (2.1)

where A(z, ζ ) is a germ at 0 ∈ C
n × C

n of a holomorphic function. Then A(z, z̄) ≡ 0.

In [15], Lemma 2.1 is stated only for l = 0, but the proof for l > 0 is identical (see Lemma 3.1
in [9]). Lemma 2.1 was also a crucial tool in the papers [15,8,9]. The second lemma that we shall
need is the following.

Lemma 2.2. Let k, l, n be nonnegative integers such that k < l � n/2. Assume that
g1, . . . , gk, f1, . . . , fm are germs at 0 ∈ C

n of holomorphic functions such that

−
k∑

i=1

∣∣gi(z)
∣∣2 +

m∑
j=1

∣∣fj (z)
∣∣2 = A(z, z̄)

(
−

l∑
i=1

|zi |2 +
n∑

j=l+1

|zj |2
)

, (2.2)

where A(z, ζ ) is a germ at 0 ∈ C
n × C

n of a holomorphic function. Then A(z, z̄) ≡ 0.
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The proof of Lemma 2.2 can be found in [3, Lemma 4.1] (with �′ = � and after a direct appli-
cation of Lemma 2.1 of [3]). The lemma also follows in a straightforward way from Theorem 5.7
in the subsequent work [2].

3. Preliminaries

We shall use the set-up and notation of [8]. The reader is referred to that paper for the ter-
minology used below and a brief introduction to the pseudohermitian geometry and the CR
pseudoconformal geometry. (The reader is of course also referred to the original papers by Chern
and Moser [4], Webster [24], and Tanaka [23].) Although the main focus of [8] is on strictly
pseudoconvex hypersurfaces, many of the results obtained in that paper work equally well for
Levi-nondegenerate hypersurfaces and we shall use those results in this paper. Thus, let M be a
Levi-nondegenerate CR-manifold of dimension 2n + 1, with rank n CR bundle V , and signature
l � n/2. Near a distinguished point p0 ∈ M , we let θ be a contact form and T its characteristic
(or Reeb) vector field, i.e. the unique real vector field that satisfies

T �dθ = 0, 〈θ,T 〉 = 1.

We complete θ to an admissible coframe (θ, θ1, . . . , θn) for the bundle T ′M of (1,0)-cotangent
vectors (i.e. the cotangent vectors that annihilate V ). Recall that the coframe is called admissible
if 〈θα, T 〉 = 0, for α = 1, . . . , n. We choose a frame L1, . . . ,Ln for the bundle V̄ , or, as we
shall also refer to it, the bundle of (1,0)-tangent vectors T 1,0M . The frame for T 1,0M will be
chosen such that (T ,L1, . . . ,Ln,L1̄, . . . ,Ln̄) is a frame for CT M , near p0, which is dual to the

coframe (θ, θ1, . . . , θn, θ 1̄, . . . , θ n̄). Here and in what follows, Lᾱ = Lα , θ ᾱ = θα , etc. We shall
denote the matrix representing the Levi form (relative to the frame L1, . . . ,Ln) by (gαβ̄), where
α,β = 1, . . . , n. We may assume that gαβ̄ is constant, in fact that it is diagonal with diagonal
elements −1, . . . ,−1 (l times) and 1, . . . ,1 (n− l times), although this fact will not be explicitly
used most of the time. We denote by ∇ the Webster–Tanaka pseudohermitian connection on V̄ ,
which is expressed relative to the chosen frame and coframe by

∇Lα := ωα
β ⊗ Lβ, (3.1)

where the 1-forms ωα
β on M are uniquely determined by the conditions

dθβ = θα ∧ ωα
β mod θ ∧ θ ᾱ,

dgαβ̄ = ωαβ̄ + ωβ̄α. (3.2)

Here and for the remainder of this paper, we use the summation convention that an index that
appears both as a subscript and superscript is summed over. We also use the Levi form to raise
and lower indices in the usual way. The first condition in (3.2) can be rewritten as

dθβ = θα ∧ ωα
β + θ ∧ τβ, τβ = Aβ

ν̄θ
ν̄ , Aαβ = Aβα (3.3)
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for a suitable uniquely determined torsion matrix (Aβ
ᾱ), where the last symmetry relation holds

automatically (see [24]). For future reference, we record here also the fact that the coframe
(θ, θ1, . . . , θn) is admissible if and only if

dθ = igαβ̄θα ∧ θ β̄ . (3.4)

Now, let M̂ be a Levi-nondegenerate CR-manifold of dimension 2n̂ + 1, with rank n̂ CR

bundle V̂ (= T 1,0M̂), and signature l̂ � n̂/2. Let f :M → M̂ be a smooth CR mapping. Our
arguments in the sequel will be of a local nature and we shall restrict our attention to a small
open neighborhood of p0 (that we still shall refer to as M). We shall use a ˆ to denote objects
associated to M̂ . Capital Latin indices A,B, etc., will run over the set {1,2, . . . , n̂} whereas
Greek indices α,β , etc., will run over {1,2, . . . , n} as above. Moreover, we shall let small Latin
indices a, b, etc., run over the complementary set {n + 1, n + 2, . . . , n̂}. Recall that f :M → M̂

is a CR mapping if

f ∗(θ̂) = aθ, f ∗(θ̂A
) = EA

αθα + EAθ, (3.5)

where a is a real-valued function and EA
α , EA are complex-valued functions defined near p0.

We shall assume that f is CR transversal to M̂ at p0 ∈ M , which in the present context can be
expressed by saying that a(p0) �= 0, where a is the function in (3.5). Without loss of generality,
we may assume that a ≡ 1 (i.e. we take θ = f ∗(θ̂) in our admissible coframe (θ, θα)). We note
that the CR transversality of f implies that n � n̂. Indeed, it follows easily from (3.4) and (3.5)
that

gαβ̄ = ĝAB̄EA
α EB̄

β . (3.6)

Since the rank of the matrices (gαβ̄) and (ĝAB̄) are n and n̂, respectively, we conclude that n � n̂

and the rank of the matrix (EA
α) is n. Hence, if f is CR tranversal to M̂ , it also follows that f is

an embedding, locally near p0. We may assume, without loss of generality (by renumbering the
θ̂A if necessary), that the admissible coframe (θ̂ , θ̂A) on M̂ is such that the pullback (θ, θα) :=
(f ∗(θ̂ ), f ∗(θ̂α)) is a coframe for M . Assume that (θ, θα) defined in this way is also admissible.
Hence, we shall drop the ˆover the frames and coframes if there is no ambiguity. It will be clear
from the context if a form is pulled back to M or not. Under the assumptions above, we shall
identify M with the submanifold f (M) of M̂ and write M ⊂ M̂ . Then T 1,0M becomes a rank n

subbundle of T 1,0M̂ along M . It follows that the (real) codimension of M in M̂ is 2(n̂ − n) and
that there is a rank (n̂ − n) subbundle N ′M of T ′M̂ along M consisting of 1-forms on M̂ whose
pullbacks to M (under f ) vanish. We shall call N ′M the holomorphic conormal bundle of M

in M̂ . We shall say that the pseudohermitian structure (M̂, θ̂) (or simply θ̂ ) is admissible for the
pair (M,M̂) if the characteristic vector field T̂ of θ̂ is tangent to M (and hence its restriction
to M coincides with the characteristic vector field T of θ ). If the admissible coframe (θ̂ , θ̂A)

on M̂ is such that (θ, θα), with θ := f ∗(θ̂), θα := f ∗(θ̂α), is an admissible coframe on M and
f ∗(θ̂a) = 0, then (M̂, θ̂) is admissible for the pair (M,M̂).

It is easily seen that not all contact forms θ̂ are admissible for (M,M̂). However, Lemma 4.1
in [8] (which, though stated only for strictly pseudoconvex CR-manifolds, holds also for general
Levi nondegenerate CR-manifolds) asserts that any contact form θ on M can be extended to
a contact form θ̂ in a neighborhood of M in M̂ such that θ̂ is admissible for (M,M̂). Let us
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fix a contact form θ on M , extend it to an admissible contact form θ̂ for the pair (M,M̂). We
denote by T̂ the characteristic vector field of θ̂ and by T its restriction to M . Recall that T 1,0M

is a rank n subbundle of the rank n̂ bundle T 1,0M̂ . The Levi form of M at a point p ∈ M ⊂ M̂

is given, under these identifications, by the restriction of the Levi form of M̂ to the subspace
T

1,0
p M ⊂ T

1,0
p M̂ (and, hence, in particular, l̂ � l). If we let (Lα) be a frame for T 1,0M such that

the Levi form gαβ̄ of M is constant and diagonal with −1, . . . ,−1 (l times) and 1, . . . ,1 (n − l

times) on the diagonal, then we may complete (Lα) to a frame (L̂A) = (Lα, L̂a) for T 1,0M̂ along
M such that the Levi form ĝAB̄ of M̂ along M is constant and diagonal with diagonal elements
−1, . . . ,−1 (l times), 1, . . . ,1 (n− l times), −1, . . . ,−1 (l̂ − l times) and 1, . . . ,1 (n̂−n− l̂ + l

times). Finally, we extend the L̂A to a neighborhood of M such that the Levi form of M̂ stays
constant. If we now let (θ̂ , θ̂A, θ̂ Ā) be the dual coframe of (T̂ , L̂A, L̂Ā), then clearly the coframe
(θ̂ , θ̂A) for T ′M̂ is admissible, its pullback to M equals (θ, θα,0) and (θ, θα) is an admissible
coframe for T ′M . In other words, we have obtained the following result, in whose formulation
we have taken a little more care to distinguish between M and its image f (M) in M̂ . A similar
result was obtained in [8] (Corollary 4.2) for strictly pseudoconvex hypersurfaces.

Proposition 3.1. Let M and M̂ be Levi-nondegenerate CR-manifolds of dimensions 2n + 1 and
2n̂ + 1, and signatures l � n/2 and l̂ � n̂/2, respectively. Let f :M → M̂ be a CR mapping
that is CR transversal to M̂ along M . If (θ, θα) is any admissible coframe on M , then in a
neighborhood of any point p̂ ∈ f (M) in M̂ there exists an admissible coframe (θ̂ , θ̂A) on M̂

with f ∗(θ̂ , θ̂α, θ̂ a) = (θ, θα,0). In particular, θ̂ is admissible for the pair (f (M), M̂), i.e. the
characteristic vector field T̂ is tangent to f (M). If the Levi form of M with respect to (θ, θα)

is constant and diagonal with −1, . . . ,−1 (l times) and 1, . . . ,1 (n − l times) on the diagonal,
then (θ̂ , θ̂A) can be chosen such that the Levi form of M̂ relative to this coframe is constant and
diagonal with diagonal elements −1, . . . ,−1 (l times), 1, . . . ,1 (n − l times), −1, . . . ,−1 (l̂ − l

times) and 1, . . . ,1 (n̂ − n − l̂ + l times). With this additional property, the coframe (θ̂ , θ̂A) is
uniquely determined along M up to unitary transformations in U(n, l) × U(n̂ − n, l̂ − l).

Let us fix an admissible coframe (θ, θα) on M and let (θ̂ , θ̂A) be an admissible coframe
on M̂ near a point p̂ ∈ f (M). We shall say that (θ̂ , θ̂A) is adapted to (θ, θα) on M (or simply
to M if the coframe on M is understood) if it satisfies the conclusion of Proposition 3.1 with the
requirement there for the Levi form. For convenience of notation though, we continue to denote
the Levi forms by gαβ̄ and ĝAB̄ .

For ease of notation, we shall write (θ, θA) for the coframe (θ̂ , θ̂A). The fact that (θ, θA) is
adapted to M implies, in view of (3.3), that if the pseudohermitian connection matrix of (M̂, θ̂)

is ω̂B
A, then that of (M, θ) is (the pullback of) ω̂β

α . Similarly, the pulled back torsion τ̂ α is τα .
Hence omitting a ˆ over these pullbacks will not cause any ambiguity and we shall do it in the
sequel. By our normalization of the Levi form, the second equation in (3.2) reduces to

ωBĀ + ωĀB = 0, (3.7)

where as before ω ¯ = ω ¯ .
AB AB
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The matrix of 1-forms (ωα
b) pulled back to M defines the second fundamental form of M

(or more precisely of the embedding f ). Since θb is 0 on M , we deduce by using Eq. (3.3) that,
on M ,

ωα
b ∧ θα + τb ∧ θ = 0, (3.8)

which implies that

ωα
b = ωα

b
βθβ, ωα

b
β = ωβ

b
α, τ b = 0. (3.9)

As in [8], we identify the CR-normal space T
1,0
p M̂/T

1,0
p M with Cn̂−n by letting the equivalence

classes of the La form a basis in the former space. We consider the components of the second
fundamental form (ωα

a
β)a=n+1,...,n̂ = ωα

a
βLa , for α,β = 1, . . . , n, as vectors in the CR-normal

space ∼= Cn̂−n. We also view the second fundamental form ωα
a
β as a section over M of the

vector bundle of C-bilinear maps

T 1,0
p M × T 1,0

p M → T 1,0
p M̂/T 1,0

p M, p ∈ M.

For sections of this bundle we have the covariant differential induced by the pseudohermitian
connections ∇ and ∇̂ on M and M̂ respectively:

∇ωα
a
β = dωα

a
β − ωμ

a
βωα

μ + ωα
b
βωb

a − ωα
a
μωβ

μ. (3.10)

We use e.g. ωα
a
β;γ to denote its component in the direction θγ . Higher order covariant deriva-

tives ωα
a
β;γ1,...,γl

are defined inductively in a similar way:

∇ωγ1
a
γ2;γ3...γj

= dωγ1
a
γ2;γ3...γj

+ ωγ1
b
γ2;γ3...γj

ωb
a −

j∑
l=1

ωγ1
a
γ2;γ3...γl−1μγl+1...γj

ωγl

μ. (3.11)

As above, we also consider the covariant derivatives as vectors in C
n̂−n ∼= T

1,0
p M̂/T

1,0
p M via the

identification (
ωγ1

a
γ2;γ3...γj

)
a=n+1,...,n̂

= ωγ1
a
γ2;γ3...γj

La.

We define an increasing sequence of vector spaces

E2(p) ⊂ · · · ⊂ Ek(p) ⊂ · · · ⊂ C
n̂−n ∼= T 1,0

p M̂/T 1,0
p M

by letting Ek(p) be the span of the vectors(
ωγ1

a
γ2;γ3...γj

)
a=n+1,...,n̂

, ∀2 � j � k, γi ∈ {1, . . . , n},

evaluated at p ∈ M . We shall say that the mapping f :M → M̂ is constantly (k, s)-degenerate
at p (following Lamel [18], see [8]) if the vector space Ek(q) has constant dimension n̂ − n − s

for q in an open neighborhood of p, Ek+1(q) = Ek(q), and k is the smallest integer with this
property.
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4. The second fundamental form, covariant derivatives, and the Gauss equation

For the proof of our main results, we need to recall some further results and terminology
from [8]. We keep the notation from the previous section. A tensor Tα1...αr β̄1...β̄s

a1...at b̄1...b̄q , with
r, s � 1, is called conformally flat if it is a linear combination of gαi β̄j

for i = 1, . . . , r , j =
1, . . . , s, i.e.

Tα1...αr β̄1...β̄s

a1...at b̄1...b̄q =
r∑

i=1

s∑
j=1

gαi β̄j
(Tij )α1...α̂i ...αr β̄1...

̂̄βj ......β̄s

a1...at b̄1...b̄q , (4.1)

where e.g. α̂ means omission of that factor. (A similar definition can be made for tensors with
different orderings of indices.) The following observation gives a motivation for this definition.
Let Tα1...αr β̄1...β̄s

a1...at b̄1...b̄q be a tensor, symmetric in α1, . . . , αr as well as in β1, . . . , βs , and
form the homogeneous vector-valued polynomial of type (r, s) whose components are given by

T a1...at b̄1...b̄q (ζ, ζ̄ ) := Tα1...αr β̄1...β̄s

a1...at b̄1...b̄q ζ α1 . . . ζ αr ζ β1 . . . ζ βs ,

where ζ = (ζ 1, . . . , ζ n). Then, the reader can check that the tensor is conformally flat if and only
if all the polynomials T a1...at b̄1...b̄q (ζ, ζ̄ ) are divisible by the Hermitian form g(ζ, ζ̄ ) := gαβ̄ζ αζ β .
Since ∇gαβ̄ = 0 (see the second equation of (3.2)), it is clear that covariant derivatives of a
conformally flat tensor is again conformally flat.

We shall now restrict our attention to the case where the target manifold M̂ is the standard
hyperquadric QN

l in CP
N+1, as defined by (1.1). (Thus, in what follows the CR dimension of

M̂ = QN
l is N .) The crucial property of the quadric that we shall use is that its Chern–Moser

pseudoconformal curvature tensor ŜAB̄CD̄ vanishes identically. We shall need the following
lemma. The corresponding result in the strictly pseudoconvex case is proved, but not explicitly
stated in [8]. Although the proof in the general case is identical to that of the strictly pseudocon-
vex case, we give it here for the convenience of reader.

Lemma 4.1. Let M ⊂ C
n+1 be a smooth Levi-nondegenerate hypersurface of signature l � n/2,

f :M → QN
l ⊂ C

N+1 a smooth CR mapping that is CR transversal to QN
l along M , and ωα

a
β

its second fundamental form. Then, the covariant derivative tensor ωα
a
β ;γ̄ is conformally flat.

Proof. We shall work locally near a point p ∈ M and use the setup introduced in Section 3. Let(
ω,ωα,ωᾱ,φ,φβ

α,φα,φᾱ,ψ
)
,

(
ω̂, ω̂A, ω̂Ā, φ̂, φ̂B

A, φ̂A, φ̂Ā, ψ̂
)

(4.2)

be the Chern–Moser pseudoconformal connections on the coframe bundles Y → M and
Ŷ → QN

l , respectively, pulled back to M and QN
l by (the completion of) our admissible coframes

(θ, θα, θ ᾱ) and (θ, θA, θĀ) (see [8, Section 3]). The latter connection is then pulled back to M

by the embedding f . The 1-form φ̂α
a is of the form

φ̂α
a = ωα

a
βθβ + D̂α

aθ, (4.3)

for some coefficients D̂α
a (see (3.3), (3.6) of [24], or Proposition 3.1 in [8]). By differentiat-

ing (4.3), using the structure equation for φ̂α
a ((3.12) in [8]; recall that the pseudoconformal
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curvature ŜAB̄CD̄ of QN
l vanishes identically), and identifying the coefficients of θβ ∧ θ γ̄ , we

obtain

ωα
a
β;γ̄ = i

(
gαγ̄ D̂β

a + gβγ̄ D̂α
a
)
, (4.4)

which proves the lemma. Here, to simplify the computation, we choose an adapted coframe
near p, the point under study, such that ωα

β(p) = ω̂a
b(p) = 0 (cf. e.g. Lemma 2.1 in [19]). We

will do the same in the following lemma, too. �
We shall also need the following result that describes how covariant derivatives commute.

A similar result (with a slightly stronger conclusion) can be found in [8] (Lemma 7.4). The
proof given there uses a result that does not immediately apply to our current situation. We give
therefore a (more or less) self-contained proof here.

Lemma 4.2. Let M , f , and ωα
a
β be as in Lemma 4.1. Then, for any s � 2, we have a relation

ωγ1
a
γ2;γ3...γsαβ̄ − ωγ1

a
γ2;γ3...γs β̄α = Ca

γ1...γsαβ̄
μ1...μs

bωμ1
b
μ2;μ3...μs

+ Tγ1...γsαβ̄
a, (4.5)

where the tensor Ca
γ1...γsαβ̄

μ1...μs
b depends only on (θ, θα) and the second fundamental form

ωα
a
β , and Tγ1...γsαβ̄

a is conformally flat.

Proof. We shall use the pseudoconformal connections in (4.2), as in the proof of Lemma 4.1
above. By observing that the left-hand side of the identity (4.5) is a tensor, it is enough to show,
for each fixed point p ∈ M , the identity at p with respect to any particular choice of adapted
coframe (θ, θA) near p. By making a suitable unitary change of coframe θα → uβ

αθβ and θa →
ub

aθb (in the tangential and normal directions respectively), we may choose an adapted coframe
near p such that ωα

β(p) = ω̂a
b(p) = 0 (cf. e.g. Lemma 2.1 in [19]). By using (3.11) and (4.3),

we conclude that, relative to this coframe, the left-hand side of (4.5) evaluated at p is equal to,
modulo a conformally flat tensor, the coefficient in front of θα ∧ θ β̄ in the expression

s∑
j=1

ωγ1
a
γ2;γ3...γj−1μγj+1γs

dωγj

μ − ωγ1
b
γ2;γ3...γs

dφ̂b
a. (4.6)

The first term (i.e. the sum) in (4.6) is clearly of the form on the right-hand side of (4.5). In-
deed, the coefficients dωγj

μ corresponding to the Ca
γ1...γsαβ̄

μ1...μs
b on the right in (4.5) only

depend on the coframe (θ, θα) (and not even on the second fundamental form). It is not clear
that the corresponding coefficients dφ̂b

a in the second term of (4.6) depend only on the coframe
and the second fundamental form. To show that it does, we compute dφ̂b

a using the structure
equation (3.12) in [8], the vanishing of θa on M , and the vanishing of φ̂β

α and φ̂b
a at p modulo

θ to obtain:

dφ̂b
a = φ̂b

μ ∧ φ̂μ
a − iδb

aφ̂μ ∧ θμ mod θ. (4.7)

Making use of the fact that φ̂b
μ = −φ̂b

μ mod (θ), we see that the first term on the right-hand side
of (4.7) contributes the term

gμκ̄gbc̄ωμ
a
γ ωκ̄

c̄
ν̄ ,
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to the coefficient in front of θα ∧ θ β̄ in (4.6). We observe that these only depend on the coframe
and the second fundamental form. For the second term on the right in (4.7), we recall from [8]
(see Eqs. (6.1) and (6.8)) that, pulled back to M ,

φ̂α = φα + Cμ
αθμ + Fαθ (4.8)

for some coefficients Cμ
α and Fα , where

Cαβ̄ = iωμ
a
αωμ

aβ̄

n + 2
− igαβ̄ωμ

a
νω

μ
a
ν

2(n + 1)(n + 2)
. (4.9)

In (4.9), we have used the vanishing of the curvature ŜAB̄νμ̄ of the target quadric. We observe

that the coefficients in front of θα and θ β̄ in the pulled back forms φ̂γ are uniquely determined
by the coframe (θ, θα) and the scalar products ωα

a
μωβ̄aν̄ . Hence, the second term on the right

in (4.7), substituted in (4.6), contributes only terms of the form that appear on the right-hand side
of (4.5). This completes the proof of Lemma 4.2. �

The final ingredient we shall need for the proof of our main result is the Gauss equation for the
second fundamental form of the embedding. For our purposes, we shall only need the following
form of it. A more general and precise version is stated and proved in [8] (Theorem 2.3; the
lemma below corresponds to Eq. (7.17) in [8]). The proof in the Levi-nondegenerate case is
identical to that of the strictly pseudoconvex case in [8], and is therefore not repeated here.

Lemma 4.3. Let M , f , and ωα
a
β be as in Lemma 4.1. Then,

0 = Sαβ̄μν̄ + gab̄ωα
a
μωβ̄

b̄
ν̄ + Tαβ̄μν̄, (4.10)

where Sαβ̄μν̄ is the Chern–Moser pseudoconformal curvature of M and Tαβ̄μν̄ is a conformally
flat tensor.

5. Proof of Theorem 1.1

The first step in the proof of Theorem 1.1 is the following result concerning the second fun-
damental form and its derivatives. The notation is the same as in the previous sections. (For
convenience of notation in the proof, we use f and f̃ to denote the mappings, rather than f0 and
f as in Theorem 1.1.) To simplify the notation, in what follows, we will use the notation ωa

α , for
a ∈ {1, . . . ,N − n}, instead of ωa+n

α (and similarly for ω̃a
α).

Theorem 5.1. Let M ⊂ C
n+1 be a smooth Levi-nondegenerate hypersurface of signature l � n/2

and p ∈ M . Let f :M → QN
l and f̃ :M → QÑ

l be smooth CR mappings that are CR transversal

to QN
l at f (p) and QÑ

l at f̃ (p), respectively. Suppose that N −n < l and Ñ � N . Fix an admis-
sible coframe (θ, θα) on M and choose corresponding coframes (as given by Proposition 3.1)
(θ, θA)A=1,...,N and (θ̃ , θ̃A)

A=1,...,Ñ
on QN

l and QÑ
l adapted to f (M) and f̃ (M), respectively.

Denote by (ωα
a
β)a=1,...,N−n and (ω̃α

a
β)

a=1,...,Ñ−n
the second fundamental forms of f and f̃ ,

respectively, relative to these coframes. Let k � 2 be an integer and assume that the spaces Ej(q)
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and Ẽj (q), for 2 � j � k, are of constant dimension for q near p. Then, possibly after a unitary
change of (θ̃a) near p, the following holds for 2 � j � k:{

ω̃γ1
a
γ2;γ3,...,γj

= ωγ1
a
γ2;γ3,...,γj

, a = 1, . . . ,N − n,

ω̃γ1
i
γ2;γ3,...,γj

= 0, i = N − n + 1, . . . , Ñ − n.
(5.1)

Remark 5.2. If f and f̃ in Theorem 5.1 are assumed to be CR transversal to QN
l and QÑ

l at
f (p) and f̃ (p), respectively, for every p ∈ M , then for any k � 2 the set of points p ∈ M such
that the spaces Ej(q) and Ẽj (q), for 2 � j � k, are of constant dimension for q near p is open
and dense in M .

Proof. Recall the normalization of the Levi forms given by Proposition 3.1. We think of
(ωγ1

a
γ2;γ3,...,γj

)a=1,...,N−n and (ω̃γ1
b
γ2;γ3,...,γj

)
b=1,...,Ñ−n

as vectors in C
N−n and C

Ñ−n, respec-
tively. Let ej denote the dimension of Ej(q), for q near p and j = 2, . . . , k. We first make an
initial unitary change of the θa , a = 1, . . . ,N − n, near p such that, for each j = 2, . . . , k, we
have

ωγ1
a
γ2;γ3,...,γj

= 0, a = ej + 1, . . . ,N − n. (5.2)

We then embed C
N−n in C

Ñ−n as the subspace {W ∈ C
Ñ−n: Wi = 0, i = N −n+1, . . . , Ñ −n},

i.e. we extend ωγ1
a
γ2;γ3,...,γj

to be 0 for a = N − n + 1, . . . , Ñ − n. The proof now consists of

showing that, possibly after a unitary change of the θ̃ a , we have

ω̃γ1
a
γ2;γ3,...,γj

= ωγ1
a
γ2;γ3,...,γj

, a = 1, . . . , Ñ − n. (5.3)

If we subtract the Gauss equations for ωα
a
β given by (4.10) from the corresponding one for

ω̃α
a
β , we obtain (since the pseudoconformal curvature Sαβ̄μν̄ in both equations is computed

using the same coframe (θ, θα))

−
N−n∑
a=1

ωα
a
μωβ̄

ā
ν̄ +

Ñ−n∑
b=1

ω̃α
b
μω̃β̄

b̄
ν̄ = T ′

αβ̄μν̄
, (5.4)

where T ′
αβ̄μν̄

is a conformally flat tensor. For brevity, we will write this simply as

−
N−n∑
a=1

ωα
a
μωβ̄

ā
ν̄ +

Ñ−n∑
b=1

ω̃α
b
μω̃β̄

b̄
ν̄ = 0 mod CFT. (5.5)

Let ζ := (ζ 1, . . . , ζ n), multiply (5.4) by ζ αζ βζμζ ν and sum. Since the right-hand side of (5.4)
is conformally flat, we obtain (see the beginning of Section 4)

−
N−n∑∣∣ωa(ζ )

∣∣2 +
Ñ−n∑∣∣ω̃b(ζ )

∣∣2 = A(ζ, ζ̄ )

(
−

l∑∣∣ζ i
∣∣2 +

n∑ ∣∣ζ j
∣∣2

)
, (5.6)
a=1 b=1 i=1 j=l+1
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where ωa(ζ ) = ωα
a
βζαζ β , ω̃b(ζ ) = ω̃α

b
βζ αζ β , and A(ζ, ζ̄ ) is a polynomial in ζ and ζ̄ . Recall

that N − n < l. By Lemma 2.2, we conclude that A ≡ 0 and, hence,

N−n∑
a=1

∣∣ωa(ζ )
∣∣2 =

Ñ−n∑
b=1

∣∣ω̃b(ζ )
∣∣2

, (5.7)

or equivalently, since ωα
a
μ = 0 for a = N − n + 1, . . . , Ñ − n,

Ñ−n∑
a=1

ωα
a
μωβ̄

ā
ν̄ =

Ñ−n∑
b=1

ω̃α
b
μω̃β̄

b̄
ν̄ , (5.8)

i.e. the collection of vectors (ωα
a
β)

a=1,...,Ñ−n
and (ω̃α

a
β)

a=1,...,Ñ−n
have the same scalar prod-

ucts with respect to the standard scalar product in C
Ñ−n. Hence, after a unitary change of θ̃ a

(smooth by the constant dimension assumption on E2(q)), we may assume that

ωα
a
β = ω̃α

a
β (5.9)

near p.
Next, we take a covariant derivative in the direction θγ1 in the Gauss equations for ωα

a
β and

ω̃α
a
β respectively, and then subtract the two resulting equations. Since the covariant derivative

of a conformally flat tensor stays conformally flat and the covariant derivative of the curvature
tensor Sαβ̄μν̄:γ is the same in both equations, we obtain

−
N−n∑
a=1

(
ωα

a
μ;γ1ωβ̄

ā
ν̄ + ωα

a
μωβ̄

ā
ν̄;γ1

) +
Ñ−n∑
b=1

(
ω̃α

b
μ;γ1 ω̃β̄

b̄
ν̄ + ω̃α

b
μω̃β̄

b̄
ν̄;γ1

) = 0 mod CFT.

(5.10)

By Lemma 4.1, the covariant derivatives ωβ̄
b̄
ν̄;γ1 and ω̃β̄

b̄
ν̄;γ1 are conformally flat (since

ωβ̄
ā
ν̄;γ1 = ωβ

a
ν;γ̄1 ). Hence, by using (5.9), we obtain

N−n∑
a=1

(
ωα

a
μ;γ1 − ω̃α

b
μ;γ1

)
ωβ̄

ā
ν̄ = 0 mod CFT. (5.11)

Since N − n < l � n/2, we conclude, by using Lemma 2.1 in the same way we used Lemma 2.2
above, that in fact

N−n∑
a=1

(
ωα

a
μ;γ1 − ω̃α

a
μ;γ1

)
ωβ̄

ā
ν̄ = 0, (5.12)

which in turn implies

ω̃α
a
μ;γ = ωα

a
μ;γ , a = 1, . . . , e2. (5.13)
1 1
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We now take two covariant derivatives in the directions θγ1 and θ γ̄1 in the two Gauss equations
and subtract the resulting equations. By again using the facts that covariant derivatives of the form
ωa

a
β;γ̄ are conformally flat and covariant derivatives of conformally flat tensors are conformally

flat, we obtain

−
N−n∑
a=1

(
ωα

a
μ;γ1γ̄1ωβ̄

ā
ν̄ + ωα

a
μ;γ1ωβ̄

ā
ν̄;γ̄1

)

+
Ñ−n∑
b=1

(
ω̃α

b
μ;γ1γ̄1 ω̃β̄

b̄
ν̄ + ω̃α

b
μ;γ1 ω̃β̄

b̄
ν̄;γ̄1

) = 0 mod CFT. (5.14)

By Lemma 4.2, we have

ωα
a
μ;γ1γ̄1 = ωα

a
μ;γ̄1γ1 + Ca

αμγ1γ̄1
τν

bωτ
b
ν mod CFT, (5.15)

where the Ca
αμγ1γ̄1

τν
b only depend on the coframe (θ, θα) and the second fundamental

form ωα
a
β . Since ωα

a
μ;γ̄1γ1 is conformally flat, we conclude that

ωα
a
μ;γ1γ̄1 = Ca

αμγ1γ̄1
τν

bωτ
b
ν mod CFT. (5.16)

The same argument applied to ω̃α
a
μ;γ1γ̄1 , using the equality (5.9), shows that

ω̃α
a
μ;γ1γ̄1 = Ca

αμγ1γ̄1
τν

bωτ
b
ν mod CFT (5.17)

with the same Ca
αμγ1γ̄1

τν
b . Substituting these identities back in (5.14), we obtain

−
N−n∑
a=1

ωα
a
μ;γ1ωβ̄

ā
ν̄;γ̄1 +

Ñ−n∑
b=1

ω̃α
b
μ;γ1 ω̃β̄

b̄
ν̄;γ̄1 = 0 mod CFT. (5.18)

By using Lemma 2.2 as above, we find that in fact

−
N−n∑
a=1

ωα
a
μ;γ1ωβ̄

ā
ν̄;γ̄1 +

Ñ−n∑
b=1

ω̃α
b
μ;γ1 ω̃β̄

b̄
ν̄;γ̄1 = 0. (5.19)

Since we already have (5.13), we conclude that there is a unitary change of the remaining
θ̃ e2+1, . . . , θ̃ Ñ−n such that

ω̃α
a
μ;γ1 = ωα

a
μ;γ1 . (5.20)

We notice that such a unitary change of the coframes does not affect (5.9).
We now complete the proof of Theorem 5.1 by induction, using the ideas above. We assume

that

ω̃α
a
β;γ ,...,γ = ωα

a
β;γ ,...,γ , a = 1, . . . , Ñ − n, (5.21)
1 j 1 j
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holds for all 0 � j � k with k � 2. We wish to prove that (5.21) holds for all 0 � j � k + 1,
after possibly another unitary change of the θ̃ a . We apply repeatedly covariant derivatives in the
directions θγ1 , . . . , θγk+1 to the Gauss equations for ωα

a
β and ω̃α

a
β . We obtain, using as above

the fact that ωα
a
β;γ̄ is conformally flat,

−Sαβ̄μν̄;γ1,...,γk+1
=

N−n∑
a=1

ωα
a
μ;γ1,...,γk+1ωβ̄

ā
ν̄ mod CFT, (5.22)

and

−Sαβ̄μν̄;γ1,...,γk+1
=

Ñ−n∑
a=1

ω̃α
a
μ;γ1,...,γk+1 ω̃β̄

ā
ν̄ mod CFT. (5.23)

Subtracting these two equations, using the fact that ωα
a
β = ω̃α

a
β and Lemma 2.1 as above, we

conclude that

ω̃α
a
μ;γ1...γk+1 = ωα

a
μ;γ1...γk+1 , a = 1, . . . , e2. (5.24)

We now differentiate the two equations (5.22) and (5.23) in the direction θ λ̄1 . We obtain

−Sαβ̄μν̄;γ1,...,γk+1λ̄1

=
N−n∑
a=1

ωα
a
μ;γ1,...,γk+1λ̄1

ωβ̄
ā
ν̄ +

N−n∑
a=1

ωα
a
μ;γ1,...,γk+1ωβ̄

ā
ν̄;λ̄1

mod CFT, (5.25)

and

−Sαβ̄μν̄;γ1,...,γk+1λ̄1

=
Ñ−n∑
a=1

ω̃α
a
μ;γ1,...,γk+1λ̄1

ω̃β̄
ā
ν̄ +

Ñ−n∑
a=1

ω̃α
a
μ;γ1,...,γk+1 ω̃β̄

ā
ν̄;λ̄1

mod CFT. (5.26)

We now use Lemma 4.2 repeatedly to commute the covariant derivative ωα
a
μ;γ1,...,γk+1λ̄1

in (5.25) to the conformally flat derivative ωα
a
μ;λ̄1γ1,...,γk+1

. In doing so, we produce, accord-
ing to Lemma 4.2, new conformally flat terms as well as covariant derivatives of the form(

Ca
αμγ1...γj+1λ̄1

μ1...μj+2
bωμ1

b
μ2;μ3...μj+2

)
;γj+2...γk+1

(5.27)

with 0 � j � k − 1 and

Ca
αμγ1...γk+1λ̄1

μ1...μk+2
bωμ1

b
μ2;μ3...μk+2 . (5.28)

We note that, since Ca
αμγ1...γj+1λ̄1

μ1...μj+2
b only depends on the second fundamental form, all

terms of the form (5.27) and (5.28) depend only on covariant derivatives ωα
a
μ;γ1,...,γj

up to order
at most j = k. If we repeat this procedure with (5.26), then the new terms that appear are either
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conformally flat or, by the induction hypothesis, precisely the same terms (of the form (5.27)
and (5.28)) that appear in (5.25). Hence, when we subtract the two equations (5.25) and (5.26)
we obtain, using again the fact that ω̃β̄

ā
ν̄;λ̄1

= ωβ̄
ā
ν̄;λ̄1

,

N−n∑
a=1

(
ωα

a
μ;γ1,...,γk+1 − ω̃α

a
μ;γ1,...,γk+1

)
ωβ̄

ā
ν̄;λ̄1

= 0 mod CFT. (5.29)

Now, by using Lemma 2.1 as above we conclude that

ω̃α
a
μ;γ1...γk+1 = ωα

a
μ;γ1...γk+1 , a = 1, . . . , e3. (5.30)

We now apply repeated derivations in the directions θ λ̄2 , . . . , θ λ̄k to the two equations (5.25)
and (5.26) and repeat the procedure and arguments above. The conclusion is that

ω̃α
a
μ;γ1...γk+1 = ωα

a
μ;γ1...γk+1, a = 1, . . . , ek. (5.31)

The details of this are left to the reader.
In the final step, we apply a derivation in the direction θ λ̄k+1 . After repeating the procedure

above and subtracting the resulting equations we obtain

−
N−n∑
a=1

ωα
a
μ;γ1,...,γk+1ωβ̄

ā
ν̄;λ̄1...λ̄k+1

+
N−n∑
a=1

ω̃α
a
μ;γ1,...,γk+1 ω̃β̄

ā
ν̄;λ̄1...λ̄k+1

= 0 mod CFT. (5.32)

We apply Lemma 2.2 as above and conclude that in fact

N−n∑
a=1

ωα
a
μ;γ1,...,γk+1ωβ̄

ā
ν̄;λ̄1...λ̄k+1

=
N−n∑
a=1

ω̃α
a
μ;γ1,...,γk+1 ω̃β̄

ā
ν̄;λ̄1...λ̄k+1

= 0. (5.33)

It follows, by using also (5.31), that there is a unitary change of the θ̃ a , with a = ek +
1, . . . , Ñ − n, such that

ω̃α
a
μ;γ1,...,γk+1 = ωα

a
μ;γ1,...,γk+1 .

This completes the induction and, thus, the proof of Theorem 5.1. �
In view of the definition of constant (k, s)-degeneracy given at the end of Section 3 and

Remark 5.2, we obtain the following as a corollary of Theorem 5.1:

Corollary 5.3. Let M , p, f , f̃ be as in Theorem 5.1. Then, there is an open neighborhood U of p

in M such that for q in an open dense subset of U , the mapping f̃ is constantly (k, s)-degenerate
at q for some k � 2 and some s with Ñ − s � N .

To prove Theorem 1.1, we also need the following result (Theorem 5.4 below). The corre-
sponding result in the strictly pseudoconvex case was stated and proved in [8] (Theorem 2.2
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in that paper). The proof in the Levi nondegenerate case is identical, and is therefore not re-
produced here. We embed CN+1 into CPN+1 in the standard way, i.e. as the open subset
{[z0 : z1 : . . . : zN+1]: z0 �= 0}.

Theorem 5.4. Let M ⊂ C
n+1 be a real-analytic connected Levi-nondegenerate hypersurface of

signature l � n/2 and f : M → QN
l ∩ CN+1 ⊂ CN+1 a CR mapping that is CR transversal to

QN
l ∩C

N+1 at f (p) for p ∈ M . Assume that f is constantly (k, s)-degenerate near p for some k

and s. If N − n − s < n, then there is an open neighborhood V of p in M such that f (V ) is
contained in the intersection of QN

l ∩ C
N+1 with a complex plane P ⊂ C

N+1 of codimension s.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We first observe that it suffices to show that f = T ◦L◦f0, where T and
L are as in the statement of the theorem, in an open neighborhood of any point p ∈ M . Indeed, if
f = T ◦ L ◦ f0 holds on a nonempty open subset of U , then it holds on all of U since both sides
are holomorphic mappings U → CP

N+1 and U is connected.
Let Π ⊂ CP

N+1 be the hyperplane at infinity, i.e. given in homogeneous coordinates by
z0 = 0, and observe that Π is biholomorphically equivalent to CP

N . We observe that QN
l ∩ Π

is a real hypersurface isomorphic to the hyperquadric QN−1
l−1 and, hence, has signature l − 1.

Since f (U) �⊂ QN
l , it follows from Theorem 5.7 in [2] that f (U) cannot be contained in Π .

For, if it were, then f (M) would be contained in QN
l ∩ Π ∼= QN−1

l−1 and f (U) �⊂ QN
l ∩ Π , con-

tradicting the conclusion of Theorem 5.7 in [2]. We claim that there is a dense relatively open
subset M0 ⊂ M such that f (p) ⊂ QN

l ∩ C
N+1 and f is CR transversal to QN

l at f (p) for every
p ∈ M0. Indeed, the existence of M0 follows from the remarks above and Theorem 1.1 in [2],
since M ′ = QN

l satisfies condition (1.2) of that theorem (l � n/2 � n − 1 for n � 2; note that
the conditions in Theorem 1.1 of the present paper are never satisfied when n = 1). A similar
argument applies to the mapping f0 and after restricting M0 if necessary, we may assume that
f0(p) ∈ Q

N0
l ∩ C

N0+1, f (p) ∈ QN
l ∩ C

N+1 and that both maps are CR transversal to their target
manifolds for every p ∈ M0.

By Corollary 5.3 (with the roles of f and f̃ played by f0 and f , respectively), we conclude
that there is a nonempty open subset of M0 on which f is constantly (k, s)-degenerate for some k

and s with N − s � N0. Since N −n− s � N0 −n < l � n/2 < n, Theorem 5.4 implies that there
exists a point p0 ∈ M0 and an open neighborhood V of p0 in M0 such that f (V ) is contained in
the intersection of QN

l ∩C
N+1 with a complex plane P ⊂ C

N+1 of codimension s. Since N −s �
N0, P is of dimension � N0 + 1. Without loss of generality (by enlarging P if necessary), we
may assume that the dimension of P equals N0 + 1. Since f is CR transversal to QN

l at f (p0),
the plane P must be transversal to QN

l at f (p0). The intersection QN
l ∩P is again a hyperquadric

(inside P ) and its signature cannot exceed l. Since f :V → QN
l ∩ P is a CR mapping that is CR

transversal to QN
l ∩ P , we conclude that QN

l ∩ P is a hyperquadric whose signature cannot be
less than l, and hence the signature of QN

l ∩ P equals l. Let P̃ be the projective plane in CP
N+1

whose restriction to C
N+1 is P . Also, let P̃0 denote the projective plane of dimension N0 + 1

given by

P̃0 := {[z0 : z1 : . . . : zN+1] ∈ CP
N+1: zN +2 = · · · = zN+1 = 0

}
.
0
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Since both intersections P̃ ∩QN
l and P̃0 ∩QN

l are nondegenerate quadrics of signature l, there ex-
ists (by elementary linear algebra) an automorphism S ∈ Aut(QN

l ) such that S(P̃ ) = P̃0. Hence,
the holomorphic mappings S ◦f and L◦f0, where L is the linear embedding given by (1.2), both
send V (by further shrinking V if necessary) into the nondegenerate quadric of signature l in the
(N0 +1)-dimensional subspace {zN0+2 = · · · = zN+1 = 0} ⊂ C

N+1, which we may identify with

the hyperquadric Q
N0
l ∩C

N0+1 in C
N0+1. Now, since (N0 −n)+ (N0 −n) < 2l � n and M is not

locally equivalent to the quadric Qn
n/2, Theorem 1.6 in [9] implies that there is an automorphism

T ′ ∈ Aut(QN0
l ) such that S ◦f = L◦T ′ ◦f0. Hence, near p0, we have f = S−1 ◦L◦T ′ ◦f0. The

mapping S−1 ◦L ◦T ′ is a holomorphic embedding CPN0+1 → CPN+1 that sends Q
N0
l into QN

l .

It follows from the hypotheses that the signature l of the quadric Q
N0
l cannot be N0/2 and, hence,

it follows from [3] that there is an automorphism T ∈ Aut(QN
l ) such that S−1 ◦ L ◦ T ′ = T ◦ L.

Consequently, the identity f = T ◦L◦f0 holds in a neighborhood of p0 in C
n+1. This completes

the proof of Theorem 1.1 in view of the remark at the beginning of the proof. �
Remark 5.5. The proof of Theorem 1.1 could also be completed without reference to [9] by
suitably modifying the proof of Theorem 7.2 in [8] to the Levi nondegenerate situation.
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