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Representation theory is all of mathematics. —Israel Gelfand
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LD-system

A binary operation (M, ∗) is left self-distributive (LD) if it satisfies

a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c).

Examples:

If G is a group, define g ∗ h := ghg−1.

(g ∗ h) ∗ (g ∗ k) = (ghg−1) ∗ (gkg−1) = (ghg−1)(gkg−1)(ghg−1) =
ghkh−1g−1 = g ∗ (h ∗ k)

This is in fact a quandle: g ∗ g = g and ∀g, k∃!h g ∗ h = k.
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LD-system

An oriented knot diagram consists of a set of arcs. The knot
quandle is the quandle generated by the arcs and the relations
a ∗ b = c; it is right self-distributive. It is a complete knot invariant
up to orientation.
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LD-system

Theorem

The word problem for free LD-systems on finitely many generators
is decidable.

Outline:

1. Assuming there is an elementary embedding j : Vλ → Vλ, show
that in the LD-system generated by j, left division has no cycle.

2. Consequently, left division in free LD-systems has no cycle.

3. Given two expressions t1, t2, enumerate all possible ways to
expand them using LD; use 2 to argue that if t1, t2 aren’t
equivalent, eventually we will find t′1, t

′
2 s.t. one of them is a

proper subterm of the other.
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Structure

A structure is a set equipped with some (finitary) functions,
relations and constants (distinguished elements).

Examples:

1. A group (G, ·, e) has one binary operation and one constant.
Not all structures (X, ·, e) are groups, e.g., (N,+, 0) or (Z,+, 1).

2. ring (R,+, ·, 0, 1)

3. linear order (X,<)

4. digraph (G,E)

5. ordered field (R,+, ·, 0, 1, <)

6. A category can be viewed as a structure with two sorts, objects
and morphisms. Composition of morphisms is viewed as a ternary
relation.
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Structure

A substructure is a subset containing all constants and closed
under all functions; the relations are restricted to the subset.

Examples:

1. A substructure of (G, ·, e) is only a semigroup. A substructure
of (G, ·,−1, e) is a group.

2. If there is no function then any subset can be viewed as a
substructure. A subset of (X,<) is naturally a sub-linear order. A
subset of (G,E) is an induced subgraph.

3. An embedding j : A → B is an isomorphism with a substructure
of B.
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Satisfaction

For a fixed list of functions, relations and constants, we can define
what it means for a structure to satisfy a statement about those
functions, relations and constants.

(G, ·, e) is a group if it satisfies:

(i) ∀x∀y∀z (x · y) · z = x · (y · z);

(ii) ∀x x · e = e · x = x;

(iii) ∀x∃y x · y = y · x = e.

(X,<) is a partial order if it satisfies:

(i) ∀x∀y∀z(x < y ∧ y < z → x < z);

(ii) ∀x∀y ¬(x < y ∧ y < x).
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Satisfaction

How to express that (G, ·, e) is torsion-free? A naive attempt:

∀n > 1∀x(x 6= e→ xn 6= e)

This doesn’t work because xn 6= e is the abbreviation of

x · x · x · · · · x︸ ︷︷ ︸
n times

6= e,

which is a different formula for each natural number n.

The correct way: a group is torsion-free iff it satisfies all the
following statements.

∀x(x 6= e→ x · x 6= e)

∀x(x 6= e→ x · x · x 6= e)

∀x(x 6= e→ x · x · x · x 6= e)

...
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Satisfaction

Similarly, (G, ·, e) is infinite iff it satisfies all of the following
statements.

∃x1∃x2 x1 6= x2

∃x1∃x2∃x3(x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3)

...

Properties about groups expressible in formal language (possibly
with infinitely many statements): torsion-free, infinite, abelian,
trivial, having exactly 60 elements...

Properties not expressible: torsion, finite, free, simple, finitely
generated...
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Satisfaction

A field is algebraically closed iff it satisfies all of the following
statements.

∀a0∀a1∃x(x2 + a1x+ a0 = 0)

∀a0∀a1∀a2∃x(x3 + a2x
2 + a1x+ a0 = 0)

...

An ordered field is real closed iff it satisfies:

(i) every positive element has a square root;

(ii) every odd degree polynomial has a root.
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Elementary substructure

A substructure N ⊆M is elementary if it satisfies exactly the
same (formal) properties as M, where “properties” allow
parameters from N .

More precisely, if a1, . . . , an ∈ N and ϕ(x1, . . . , xn) is some
statement, then

N satisfies ϕ(a1, . . . , an) ⇔ M satisfies ϕ(a1, . . . , an)
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Elementary substructure

Non-examples:

1. (Z,+) satisfies ∃x x+ x = 2 but (2Z,+) doesn’t, despite that
the parameter 2 belongs to 2Z; so (2Z,+) is not an elementary
substructure. Note that (2Z,+) ' (Z,+), so they satisfy the same
parameter-free statements (aka sentences).

2. ([0, 2], <) satisfies ∃x 1 < x but ([0, 1], <) doesn’t, so ([0, 1], <)
is not an elementary substructure.

3. (Q,+, ·, 0, 1) satisfies the sentence ∀x 6= 0∃y x · y = 1, while
(Z,+, ·, 0, 1) doesn’t. To tell Q and C apart, note that the former
isn’t algebraically closed.
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Elementary substructure

Examples:

1. (Lefschetz transfer principle) If E ⊆ F are both algebraically
closed, then E is an elementary substructure. We say that the
theory of ACF is model-complete.

In particular, if a system of polynomial equations with parameters
from E has solution in F , then it has solution in E.

2. (Tarski-Seidenberg) The theory of real closed field (RCF) is
model-complete.

3. (Löwenheim-Skolem-Tarski) Any infinite structure M has
elementary substructures of any infinite size below |M|.
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3. (Löwenheim-Skolem-Tarski) Any infinite structure M has
elementary substructures of any infinite size below |M|.

14 / 28



Elementary substructure

j : A → B is an elementary embedding if it is an embedding, and
the image is an elementary substructure. Equivalently, for any
a1, . . . , an ∈ A and statement ϕ(x1, . . . , xn),

A satisfies ϕ(a1, . . . , an) ⇔ B satisfies ϕ(j(a1), . . . , j(an))

In a model-complete theory, any embedding is elementary.
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Application of model-completeness: ACF

We prove the weak Nullstellensatz: if k is ACF and
I ⊆ k[X1, . . . , Xn] is a proper ideal then V (I) 6= ∅. The full
Nullstellensatz can be proved similarly.

WLOG I is maximal. By Hilbert basis theorem I = 〈f1, . . . , fm〉.
Let K be the algebraic closure of the field k[X1, . . . , Xn]/I.
X1, . . . , Xn are a solution to I in K.

“The system f1 = 0, f2 = 0, . . . , fm = 0 has a solution” can be
expressed as a single statement with parameters from k. Since it is
true in K, by model completeness it is true in k.
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Application of model-completeness: RCF

A polynomial f(X1, . . . , Xn) is positive semidefinite if
f(a1, . . . , an) ≥ 0 for a1, . . . , an ∈ R.

Hilbert’s 17th: f is a sum of square of rational functions.

Fact: an element of R(X1, . . . , Xn) is a sum of squares iff it is
positive under any field ordering of R(X1, . . . , Xn).

So it suffices to show that f ≥ 0 under any field ordering of
R(X1, . . . , Xn). Given such an ordering, let K be the real closure
of R(X1, . . . , Xn). Since ∀a1 · · · ∀an f(a1, . . . , an) ≥ 0 is true in
R, it is true in K, so in particular f(X1, . . . , Xn) ≥ 0.
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Other applications of model theory

1. (complex/real/arithmetic/differential) algebraic geometry, in
particular a proof of Mordell-Lang conjecture (Hrushovski);

2. non-standard analysis;

3. some results on representation growth,

etc.
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Von-Neumann hierarchy

A set is a set of sets. More precisely:

V0 = ∅

V1 = P(V0) = {∅}

V2 = P(V1) = {∅, {∅}}

V3 = P(V2) = {∅, {∅}, {{∅}}, {∅, {∅}}}
...

Vω =
⋃
n<ω Vn

Vω+1 = P(Vω)
...

Vω+ω =
⋃
n<ω Vω+n

...
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Large cardinal

A set X is singular if it can be written as X =
⋃
i∈I Xi where

|Xi| < |X| for each i, and also |I| < |X|. Otherwise it is regular.

X is inaccessible if it is regular and whenever |A| < |X|,
|P(A)| < |X|.

Examples:

1. A countable set is inaccessible since it’s not a finite union of
finite sets, and power set of a finite set is finite. The existence of
an uncountable inaccessible set is a large cardinal axiom, which is
so powerful that it implies the consistency of ZFC set theory.

2. Vω+ω is singular since Vω+ω =
⋃
n<ω Vω+n, and for each n

|Vω+n| < |Vω+ω|, although Vω+ω satisfies the second requirement
of inaccessibility.
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Large cardinal

Provably one cannot prove that inaccessible set is consistent, i.e.,
assuming it exists doesn’t lead to contradiction. Most set theorists
believe in its consistency, so they kept strengthening the
assumption...

Recall that an elementary embedding is an isomorphism with an
elementary substructure.

The existence of a non-identity elementary embedding
j : (Vλ,∈)→ (Vλ,∈) is called I3, the third-closest-to-inconsistency
large cardinal axiom. There are many inaccessible von-Neumann
levels below Vλ, although Vλ itself isn’t inaccessible.
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LD-system of elementary embeddings

If j, k : (Vλ,∈)→ (Vλ,∈) are elementary embeddings, we can form
the composition j ◦ k. We can also apply j to k as follows. k is
not an element of Vλ, but kα, the restriction of k to some Vα for
α < λ, is a function with domain Vα. Since j is an elementary
embedding,

kα is a function with domain Vα ⇒ j(kα) is a function with domain Vj(α).

Also, for β > α

kβ extends kα ⇒ j(kβ) extends j(kα)

Therefore the various j(kα) are compatible, and cohere to a map
Vλ → Vλ, which is denoted j ∗ k. It is an elementary embedding.
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LD-system of elementary embeddings

Proposition

If j, k, l : (Vλ,∈)→ (Vλ,∈) are elementary embeddings, then
j ∗ (k ∗ l) = (j ∗ k) ∗ (j ∗ l).

Essentially this is because by elementarity, the function f sends x
to y ⇒ the function j(f) sends j(x) to j(y), in other words,

j(f(x)) = j(f)(j(x))

Let Eλ be the set of non-identity elementary embeddings from Vλ
to Vλ. We say that j is left divisible by j′ if j = j′ ∗ k for some k.

Theorem

Eλ is an LD-system where left division has no cycle, i.e., there is no
j1, j2, . . . , jn where ji+1 is left divisible by ji.
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LD-system of elementary embeddings

Corollary

Assuming the existence of a non-identity elementary embedding
j : Vλ → Vλ for some λ, the word problem for free LD-systems is
decidable.

Theorem (Dehornoy)

The large cardinal assumption can be dropped.

In fact the large cardinal-free proof yielded more: it revealed the
close relation between LD-systems and braid groups, and showed
that braid groups are orderable.
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Laver table

Fact: for each N there is a unique binary operation ∗ defined on
{1, 2, . . . , N} such that:

(i) a ∗ 1 = a+ 1 for 1 ≤ a ≤ N − 1, and N ∗ 1 = 1;

(ii) a ∗ (b ∗ 1) = (a ∗ b) ∗ (a ∗ 1).
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Laver table

Fact: This is an LD-system iff N = 2n, called the n-th Laver table
and denoted An. Each row of An is periodic, and the periods are
powers of 2. The period of the i-th row of An is non-decreasing
with n.

An is a certain quotient of the subset of Eλ generated by any fixed
j under application and composition; it originated as a tool to
calculate the effects of elementary embeddings on so-called critical
points. Ans are “building blocks” of finite LD-systems.
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Laver table
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Laver table

Theorem

The period of the i-th row in An tends to infinity with n.

The proof uses the relation between An and elementary
embeddings.

Remarks:

1. Unlike word problem, this theorem hasn’t been proved without
large cardinal.

2. It is known that if the period indeed tends to infinity, it does so
extremely slowly. The period of the first row reaches 16 at n = 9,
but it cannot reach 32 (if ever) until n > A(9, A(8, A(8, 254))),
where A(m,n) is the Ackermann function.
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