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Background

In physics: Supersymmetry regarding particles of different statistics
(Bosons & Fermions)

In mathematics: Graded Lie algebras in deformation theory
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Background

It appears that at least in particle physics, there is no experimental evidence
that any supersymmetric extension to the standard model is correct...

Still, it finds applications to various other fields beyond particle physics.

Super Lie theory still has a lot of unsolved mysteries. It lives on as some pure
mathematical pursuit.
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Lie Superalgebras

General Principle of Superization

A (good) Z2-grading for everything!

Z2 =
{
0, 1

}
= {even, odd}

Let’s review Lie algebras!
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Lie Algebras

Definition ([Hum78])

A Lie algebra is a vector space g with a bilinear map [−,−] : g⊗ g → g which is
skew symmetric and satisfies the Jacobi identity, that is

1 [X,Y ] = −[Y,X]

2 [[X,Y ], Z] = [X, [Y,Z]]− [Y, [X,Z]]

Classic example: EndV equipped with the usual commutator
([A,B] = AB −BA). As a Lie algebra, we denote it as gl(V ).
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A bit of rep theory

Definition

Let g be a Lie algebra. A representation is a pair (π, V ) such that
π : g → gl(V ) is a linear map preserving the Lie bracket, i.e.
π([X,Y ]) = [π(X), π(Y )]. We say V is a g-module.

Weyl’s Theorem: If g is complex semisimple, then any finite dimensional
g-module is completely reducible.

Know simples, know all.

“Redefine” g

Jacobian id. ⇐⇒ g is a g-module.
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Linear Superalgebra

Definition

A vector superspace V is a Z2-graded vector space V = V0⊕V1. A vector v ∈ V0

(resp. V1) is said to be even (resp. odd) and write |v| = 0 (resp. 1). Denote the
vector superspace over k with even subspace km and odd subspace kn as km|n.
Its dimension is denoted as (m|n) while the superdimension is defined as m−n.

A linear map f : V → W is even if it preserves parity, that is, |f(v)| = |v| is
even. If |f(v)| = −|v|, it is defined to be odd. An even or odd map is said to be
homogeneous. We have{

Hom(V,W )0 := Hom(V0,W0)⊕Hom(V1,W1)

Hom(V,W )1 := Hom(V0,W1)⊕Hom(V1,W0)
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SVect

Just a quick comment:

SVect

The category of all vector superspaces, denoted as SVect, is a rigid symmetric
monoidal category.

It means ⊗ is well-defined as follows:

(V ⊗W )i :=
⊕

j+k=i

Vj ⊗Wk

with a natural isomorphism from V ⊗W to W ⊗ V :

sV,W : v ⊗ w 7→ (−1)|v||w|w ⊗ v
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Linear Superalgebra

What do the matrices look like?

(
Am×m 0m×n

0n×m Dn×n

)
correspond to even linear maps, and(

0m×m Bm×n

Cn×m 0n×n

)
to odd linear maps.
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Lie Superalgebras

Definition ([Kac77])

A Lie superalgebra is a vector superspace g = g0 ⊕ g1 with a bilinear map
[−,−] : g⊗ g → g which is skew supersymmetric and satisfies the super Jacobi
identity:

1 [X,Y ] = −(−1)|X||Y |[Y,X]

2 [[X,Y ], Z] = [X, [Y,Z]]− (−1)|X||Y |[Y, [X,Z]]

Note:

1 Everything looks similar!

2 The sign can be explained by SVect.

3 g0 is just a Lie algebra, g1 is a g0-mod.

4 The bracket is symmetric on g1.
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Super gl

We write End(Cm|n) as gl(m|n). As matrices:

(
Am×m Bm×n

Cn×m Dn×n

)
gl0:

(
Am×m 0m×n

0n×m Dn×n

)
gl1:

(
0m×m Bm×n

Cn×m 0n×n

)
The superbracket is the supercommutator [X,Y ] := XY − (−1)|X||Y |Y X.
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Classification

We aim to give an overview of the classification of complex, simple, and finite
dimensional Lie superalgebras.
“Simple ⇐⇒ no non-trivial ideals” as usual.
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Lie Algebras

7 types:

1 An, Bn, Cn, Dn: classical, (countably!) infinite families;

2 E6,7,8, F4, G2: exceptional. Dimensions: 78, 133, 248, 52, 14
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Lie Algebras

sl(n+ 1) = the Lie algebra of (n+ 1)× (n+ 1) traceless matrices; special linear

Lie algebra; An

so(n) := {X ∈ End(kn) : f(Xv,w) = −f(v,Xw), ∀v, w}, where f is a

non-degenerate symmetric bilinear form; orthogonal Lie algebra; Bn for 2n+ 1

and Dn for 2n. VERY DIFFERENT DESPITE THEIR SIMILAR APPEARANCES

sp(2n) :=
{
X ∈ End(k2n) : f(Xv,w) = −f(v,Xw),∀v, w

}
, where f is a

non-degenerate symplectic bilinear form. Non-degeneracy ⇒ dim must be even;
symplectic Lie algebra; Cn
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Lie Algebras

The condition f(Xv,w) = −f(v,Xw) comes from the corresponding Lie group
condition

f(gv, gw) = f(v, w)

with g = etX and differentiating at t = 0.

Matrix form of f :

1 Orthogonal:

(
0 In
In 0

)
,

1 0 0
0 0 In
0 In 0


2 Symplectic:

(
0 In

−In 0

)
The condition: fX = −X⊤f
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Classification Scheme

So what do with the LSAs?

Remember, simple Lie algebras are simple Lie superalgebras already. That’s
already a quarter of the zoo of LSA!

Simple


Classical

g1 is a completely reducibleg0−mod

 Basic
even non-deg. inv. form

1

Strange

The Cartan Series
weird ones

Good references: [Mus12, CW12]
not so good reference:[Kac77]

1also includes gl!
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Special Linear LSA

Define the supertrace of X =

(
Am×m Bm×n

Cn×m Dn×n

)
, denoted str(X), as

tr(A)− tr(D).2

Define sl(m|n) := {X ∈ gl(m|n) : str(X) = 0}. Guaranteed to be simple,
except...

when m = n, then In|n = diag(In, In) ∈ sl(n|n) which is central. We take the
quotient to get psl(n|n) := sl(n|n)/CIn|n.
This is the Type A analog.

A

A(m,n) := sl(m+ 1|n+ 1),m > n ≥ 0 and A(n, n) := psl(n+ 1|n+ 1).

2Makes sense! Think sdim.
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Orthosymplectic LSA

Let’s look at Type BCD analogs all at once.

Definition

Let V0 ⊕ V1 be a vector superspace. A bilinear form f : V × V → C is said to
be even if f(Vi, V1̄−i) = 0.

In terms of matrices, f has top-right and bottom-left blocks equal to 0 matrices.

Definition

A bilinear form f is said to be supersymmetric if f(v ⊗ w) = f(sV,V (v ⊗ w)) 3

for any v, w ∈ V .

If f is even, then f |V0×V0
is symmetric and f |V1×V1

is skew-symmetric.

3slight abuse of notation
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Orthosymplectic LSA

Skew-symmetric + non-degeneracy = symplectic

osp

For i ∈ Z2, osp(V )i :=
{
X ∈ End(V )i : f(Xv,w) = −(−1)i|v|f(v,Xw),∀v, w

}

Matrix form of f :

1 V = C2m+1|2n:


1 0 0
0 0 Im
0 Im 0

0 In
−In 0


2 V = C2m|2n: delete the first row and column.

The condition is now fX = −Xs⊤f where (−)s⊤ :
(
A B
C D

)
7→

(
A⊤ C⊤

−B⊤ D⊤

)
is called

the supertranspose.
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Orthosymplectic LSA

BCD

B(m,n) := osp(2m+ 1|2n), m ≥ 0, n ≥ 1; D(m,n) := osp(2m|2n),
m ≥ 2, n ≥ 1; C(n) := osp(2|2n− 2), n ≥ 2.
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Exceptional LSAs (still basic!)

1 D(2, 1, α), a (continuum) one-parameter family, dim = (6|8);
2 F (4), aka AB(1|3), dim = (24|16);
3 G(3), aka AG(1|2). dim = (17|14).
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D(2, 1, α)

Denote g = D(2, 1, α). Let g(i) = sl(2) and V (i) be the standard representation
of sl(2) for i = 1, 2, 3. Then g0 := g(1) ⊕ g(2) ⊕ g(3) and g1 := V (1) ⊗ V (2) ⊗ V (3)

(an irreducible g0-module).

Not enough to define a Lie superalgebra. Need to define the symmetric bracket
from g1 × g1 to g0. Do that by using three parameters α1, α2, α3. Let
g = g(α1, α2, α3). Must have

∑
αi = 0.

Redundancy: g(α1, α2, α3) = g(cα1, cα2, cα3) = g(ασ(1), ασ(2), ασ(3)) for any
non-zero c ∈ C and any σ ∈ S3.
It turns out that

D(2, 1, α)

D(2, 1, α) := g(α, 1,−1− α)

is simple when α ̸= −1, 0. Regarding the name, notice
D(2, 1, 1) = D(2, 1) = osp(4|2).
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non-zero c ∈ C and any σ ∈ S3.
It turns out that

D(2, 1, α)

D(2, 1, α) := g(α, 1,−1− α)

is simple when α ̸= −1, 0. Regarding the name, notice
D(2, 1, 1) = D(2, 1) = osp(4|2).
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F (4) aka AB(1|3), and G(3) aka AG(1|2)

F (4)0 := sl(2)⊕ so(7). F (4)1 := Natural Rep. of sl(2)⊗ Spin Rep. of so(7).

G(3)0 := sl(2)⊕G2, G(3)1 := Natural Rep. of sl(2)⊗ The Fund. Rep. of G2.
Details see [Mus12]
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Strange Ones

The previous ones all have even non-deg. invariant bilinear forms (e.g. Killing
forms). They are called basic.
The strange ones do NOT!
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Periplectic LSA p(n)

Let n ≥ 2. We let

p(n)

p(n) :=
{(

A B
C −A⊤

)
∈ gl(n+ 1|n+ 1) : trA = 0, B⊤ = B,C⊤ = −C

}
.

p(n)0
∼= sl(n+ 1), and p(n)1 = p(n)−1 ⊕ p(n)1 as a p(n)0-module. Here p(n)0 is

the diagonal even part, while p(n)±1 are the B and C parts respectively.

Can be regarded as the subalgebra of sl(n+ 1|n+ 1) preserving certain odd
symmetric form.
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Queer LSA q(n)

Let n ≥ 2. We let q̂(n) :=
{(

A B
B A

)
∈ gl(n+ 1|n+ 1) : trB = 0

}
, and define

q(n)

q(n) := [q̂(n), q̂(n)]/CIn+1|n+1

When people study q(n), the q̂(n) version is often used for computations.
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The Cartan Series

Those I just include for the sake of the completion of the discussion...

W (n), S(n), S̃(2n), H(n)
Let

∧
(n) be the exterior algebra on n letters ξi, i = 1, . . . , n.

∧
(n) has a

natural parity grading induced by deg ξi = 1. Then we define

W (n) := Der
∧

(n)

with W (n)i = {D ∈ Endi(
∧
(n)) : D(ab) = D(a)b+ (−1)i|a|aD(b)}

In particular, any homogeneous derivation can be expressed in the form of

n∑
i=1

pi
∂

∂ξi

with pi ∈
∧
(n). The other three are subalgebras of W (n).
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Classification Theorem

Theorem

The following is a complete list of finite dimensional simple Lie superalgebras
over C, up to some low rank isomorphisms:

1 A finite dimensional simple Lie algebra;

2 A(m,n), m > n ≥ 0; A(n, n), n ≥ 1; B(m,n), m ≥ 0, n ≥ 1; C(n), n ≥ 2;
D(m,n), m ≥ 2, n ≥ 1 (basic);

3 D(2, 1, α) for α ̸= −1, 0, F (4), G(3) (exceptional, basic);

4 p(n), q(n) for n ≥ 2 (strange);

5 W (n), S(n), S̃(2n), H(n) (Cartan).

Kac used non-degeneracy/degeneracy of Killing forms, rep. theory of g0,
grading/filtration, etc. Pretty lengthy. Real forms and Kac–Moody
superalgebras are studied by Vera Serganova [Ser83, Ser11].
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Not so good news

1 Recall we may construct a semisimple Lie algebra using Cartan matrix +
Serre’s relations. The same can be said for the basic LSAs. But it fails for
other LSAs.

2 A result by Djokovic and Hochschild says that the only not purely even
LSAs with Weyl’s complete reducibility is osp(1|2n).

3 Unlike the Lie algebra case, the Borel subalgebras are not conjugate to
each other. The choice of positivity matters.

Yes, I didn’t talk about root systems but they exist.
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Root Systems

We will look at Type A OF COURSE!

... and by that people usually mean gl.

One can “diagonalize” the adjoint action of the diagonal matrices in gl(m|n) as
usual. It’s the same as gl(n) in the non-super setting.
The plot twist is the form/inner product on roots is different now. Remember
we defined supertrace. Instead of (ϵi, ϵj) = δij , we now have

(ϵi, ϵj) = −(δi, δj) = δij , (ϵi, δj) = 0,

where ϵi, δj are standard coordinates of the diagonal matrices.
Note ϵm − δ1 has ODD root space and its length is 0. This means it’s isotropic.
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Supersymmetry

How do we capture symmetry of root systems/semisimple Lie algebras? How
do we connect symmetric polynomials with characters of simple modules?

We use Weyl groups! They are generated by reflections of simple roots. In the
classical Type A, the Weyl group is just the symmetric group Sn on ϵ1, . . . , ϵn.
What about LSAs?

Remember, ϵm − δ1 is a simple root with length 0. The reflection is not
well-defined.

Remark

For other simple roots, they generate Sm × Sn which just permutes ϵ’s with ϵ’s
and δ’s with δ’s.
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Supersymmetry

In the non-super setting,

1 Any choice of positivity/Borel is determined by an ϵ chain;

ϵ1 · · · ϵn gives the standard Borel, while ϵn · · · ϵ1 gives the opposite one

2 The highest weights of any f.d. simple highest weight module “look the
same” with respect to different Borels;
Consider the natural rep. of gl(2) w.r.t. the standard and the opposite Borels.

3 The character formula gives a symmetric polynomial with respect to the
Weyl group.
Schur polynomials are symmetric in the usual sense as the Weyl group is Sn

Important question: how do we do these for gl(m|n)?
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Odd Reflections

We want to reflect using those odd (and isotropic) roots.

Enter the odd reflections! These are defined for simple odd isotropic roots.

1 Any choice of positivity/Borel is determined by an ϵδ chain. An odd
reflection switches an adjacent pair of ϵ&δ;

2 Applying an odd reflection gives a new Borel, and the highest weight w.r.t.
it can be very easily computed;

λ′ = λ− α for (λ, α) ̸= 0 else λ′ = λ. So (· · · ,×x, •y, · · · ) becomes

(· · · , •y,×x, · · · ) if x = −y, or

(· · · ,
•

y + 1,
×

x− 1, · · · ) if x ̸= −y.

3 The character formula gives a supersymmetric polynomial satisfying the
usual symmetry + some additional properties.
Yes, super Schur polynomials exist!
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it can be very easily computed;

λ′ = λ− α for (λ, α) ̸= 0 else λ′ = λ. So (· · · ,×x, •y, · · · ) becomes

(· · · , •y,×x, · · · ) if x = −y, or

(· · · ,
•

y + 1,
×

x− 1, · · · ) if x ̸= −y.

3 The character formula gives a supersymmetric polynomial satisfying the
usual symmetry + some additional properties.

Yes, super Schur polynomials exist!
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Supersymmetric Polynomials

Let V be an m+ n dimensional vector space with the standard basis
ϵ1, . . . , ϵm, δ1, . . . , δn and coordinates x1, . . . , xm, y1, . . . , yn. Let W0 be Sm × Sn

which acts on xi and yj separately. Let f ∈ P(V ) be a polynomial on V . In V ,
we set Πϵi−δj := {v ∈ V : xi(v) + yj(v) = 0}.
We say f is supersymmetric if

1 f ∈ P(V )W0 ;

2 f(X + ϵi − δj) = f(X) if xi + yj = 0, i.e. f(X + α) = f(X) for
X ∈ Πα=ϵi−δj .

The first condition is the usual symmetry, while the second one captures some
“odd” condition.
Super Schur polynomials appear as characters of certain simple f.d. modules.
They are supersymmetric and basis for the ring of supersymmetric polynomials.
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Weyl Groupoids

Group = Small category of one object with invertible morphisms.
Groupoid = Multi-object version of a group!

Group action: a group homomorphism from W to GL(V ), equiv. to a functor
from W to GL(V ).

How?

The object is sent to V , while a morphism is sent to a linear isomorphism of V .

Then how does a groupoid W act on a vector space V ?
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Weyl Groupoids

Let AF(V ) be the category in which

1 Objects: all affine subspaces of V ;

2 Morphisms: Hom(U,W ) := {affine linear f : U → W}

Let W be a groupoid, then we say

Groupoid Action

W acts on V if there is a functor C from W to AF(V ).

This degenerates to the usual group action if there is only one object ∗ and
C(∗) = V .
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Weyl Groupoids

Denote the set of isotropic roots as 0Σ. Let W0 be the Weyl group which is
generated by the reflections of anisotropic roots.

The isotropic roots groupoid 0S is a groupoid such that Obj(0S) = 0Σ, with
non-trivial morphisms τ̄α : α → −α. Thus

Hom0S(α, β) =


∅ if β ̸= ±α

{τ̄α} if β = −α

{idα} if β = α

.

One can define the semidirect product of W0 and 0S via the action of W0 on

0Σ. Let us define the Weyl groupoid as follows

W := W0 ⊔W0 ⋉ 0S



An
Overview of
Lie Super-
algebras

Songhao
Zhu

Background

Def. & E.g.

Classification

Supersym.

My Work

References

38/45

Weyl Groupoids

Denote the set of isotropic roots as 0Σ. Let W0 be the Weyl group which is
generated by the reflections of anisotropic roots.
The isotropic roots groupoid 0S is a groupoid such that Obj(0S) = 0Σ, with
non-trivial morphisms τ̄α : α → −α. Thus

Hom0S(α, β) =


∅ if β ̸= ±α

{τ̄α} if β = −α

{idα} if β = α

.

One can define the semidirect product of W0 and 0S via the action of W0 on

0Σ. Let us define the Weyl groupoid as follows

W := W0 ⊔W0 ⋉ 0S



An
Overview of
Lie Super-
algebras

Songhao
Zhu

Background

Def. & E.g.

Classification

Supersym.

My Work

References

39/45

Weyl Groupoids

An action ([SV11]) of W on h∗ is given by (loosely speaking),

1 sending ∗ ∈ Obj(W0) to the entire V , and W0 acts on V as usual;

2 sending α ∈ Obj(0S) = 0Σ to Πα := {µ ∈ h∗ : (µ, α) = 0}, and τ̄ to
τ : µ 7→ µ+ α in Πα;

3 making sure that W0’s action and 0S’s action are compatible.
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Weyl Groupoids

A function f on V is W -invariant if f(wx) = f(x) for any w ∈ W . Similarly, we
can define groupoid invariance:

Invariance

Let W act on V via C. Then a function F defined on V is said to be
W-invariant if F |C(x) = F |C(y) ◦ C(f) for any f : x → y in W.
Thus, F (C(f)x) = F (x).

Punchline

Supersymmetric polynomials on h∗ are W-invariant w.r.t. the action above.
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My Work

I started with gl, but ended up with Type BC supersymmetry (even
supersymmetry) as I used restricted root systems.
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Set-up

Let’s consider g = gl(2m|2n), k = gl(m|n)⊕ gl(m|n). Such a pair comes from
certain symmetric superspace.

This g has a simple decomposition

g = p− ⊕ k⊕ p+

where p± are abelian.
Turns out that as a k-module, U(p−)⊗ U(p+) is completely reducible and
multiplicity free. The components W ∗

λ ⊗Wλ are nicely parametrized by certain
partitions/Young diagrams (λ).
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Results

One may choose “ 1 ∈ Endk(Wλ)Idλ’ canonically.

W ∗
λ ⊗Wλ ↪→ U

(
p−

)
⊗ U

(
p+

)
→ U (g)k

Γ−→ S(a)W0

1 7−−−−−−−−−−−−−−−−−−−−−→ Dλ 7→ Γ(Dλ)

Here Γ is the restricted root system version of Harish-Chandra isomorphism.
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Results

Proposition ([Zhu22])

The algebra ImΓ consists precisely of the symmetric polynomials on a∗ with
Type BC supersymmetry property.

Can be reformulated as

ImΓ = S (a)W ∼= P(a∗)W

Theorem ([Zhu22])

Assuming a conjecture, the Harish-Chandra image of the super Shimura
operator associate with µ, Γ(Dµ), is equal to some non-zero multiple of a Type
BC supersymmetric interpolation polynomial.
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Thank you!
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