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In 1812, Gauss presented to the Royal Society of Sciences at
Gottingen his famous paper.
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Gauss

In 1812, Gauss presented to the Royal Society of Sciences at
Gottingen his famous paper.
In this paper, Gauss studied the Gauss hypergeometric series
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where
I'(a+n)

=)
is the Pochhammer symbol. Assuming that ¢ £ 0,—1,—2,..., Gauss

proved that the series converges absolutely for |z < 1, along with
many other properties.
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Euler’s equation

What interests us most is the following;:

Theorem (Gauss, or Bateman Manuscript Project)

Gauss’s o Fy(a, b; ¢; 2) is the unique solution of the Fuler’s
hypergeometric differential equation

2

d°F dF
z(l—z)@—k(c—(a—k b—|—1)z)a—abF:0, F(0) =1,

(e9)
subject to the condition that F(2) can be expressed as Z cn?".

n=0
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As a natural generalization, hypergeometric series with more
parameters were studied thereafter:
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As a natural generalization, hypergeometric series with more
parameters were studied thereafter:

Theorem (Bateman Manuscript Project)

The series pFq(a; b; 2) is the unique solution of

d v ([ d S d
deH<zdz+bk—1>—zkl:[l<zdz+ak> (F)=0, F(0)=1,

k=1

subject to the condition that F(z) can be expressed as Y .-, cp2™.
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As a natural generalization, hypergeometric series with more
parameters were studied thereafter:

Theorem (Bateman Manuscript Project)

The series pFq(a; b; 2) is the unique solution of

d v ([ d S d
deH<zdz+bk—1>—zkl:[l<zdz+ak> (F)=0, F(0)=1,

k=1

subject to the condition that F(z) can be expressed as Y .-, cp2™.

The differential equation has two parts: diagonal (2™ — z") and
raising (2" — 2"*1). The DE is derived using combinatorics:

(a‘)n+1

(),

=a+n.
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Macdonald’s series

Around 1988, Macdonald introduced the following series in his
manuscripts, [arXiv:1309.4568, 1309.5208], associated with Jack and
Macdonald polynomials in the variables « = (z1,. .., z,) and

Yy= (y17"'7yﬂ)a

oo =3 o
it =3 o S
b =D G S

U Ty R TFY)

Here, the sums run over partitions with at most n parts,
(;a), and (- ¢, t), generalize the usual Pochhammer symbol (-),,,

Ja(a) and Jy(g, t) are Jack and Macdonald polynomials in the dual
form and the .
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Differential and ¢-difference equations

e When « is a single variable z

Jack series ,Fy(a; b; o; &) — hypergeometric series ,Fy(a; b; 2)
Macdonald series P 4(a; b; x; ¢, t) — g-series ,¢5(a; b; 2; q)

Differential and ¢-difference equations for these series, for any p, g, r, s.
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Differential and ¢-difference equations

e When « is a single variable z

Jack series ,Fy(a; b; o; &) — hypergeometric series ,Fy(a; b; 2)

Macdonald series P 4(a; b; x; ¢, t) — g-series ,¢5(a; b; 2; q)

Differential and ¢-difference equations for these series, for any p, g, r, s.

e When a = 2, the zonal case, ,Fqy(a; b; z; & = 2) has been studied in
multivariate statistics since 1950s.

Differential equations for p < 3 and ¢ < 2, by the work of [Muirhead
1970], [Constantine-Muirhead, 1972] and [Fujikoshi, 1975].
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e When a = 2, the zonal case, ,Fqy(a; b; z; & = 2) has been studied in
multivariate statistics since 1950s.

Differential equations for p < 3 and ¢ < 2, by the work of [Muirhead
1970], [Constantine-Muirhead, 1972] and [Fujikoshi, 1975].

e In the general Jack and Macdonald case, for p < 2, ¢ < 1: [Yan,
1992, [Kaneko, 1993], [Baker—Forrester 1997] and [Kaneko, 1996).

e In our recent papers, [C.—Sahi, 2510.10875] and [C., to be posted],
we find differential and ¢-difference equations for the Jack and
Macdonald case (resp.) for any p, g, r, s; unifying/generalizing all
previous results.
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For the Jack case, we find differential operators £ (lowering), N
(diagonal), R (raising), depending on a, b, av.
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For the Jack case, we find differential operators £ (lowering), N
(diagonal), R (raising), depending on a, b, av.
Theorem 1 ,Fy(a; b; x; o) is the unique solution of

(R(@ _ N<z>) (F(z)) =0, F(0)

=1

(1)
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Our results

For the Jack case, we find differential operators £ (lowering), N/
(diagonal), R (raising), depending on a, b, cv.
Theorem 1 ,F,(a; b; x; o) is the unique solution of
(R("’) —N(””)) (F(z)) =0, F(0)=1. (1)

Theorem 2 ,F,(a; b; x, y; ) is the unique solution of

(N) - R@)) (Glz,y) =0, G0,00=1.  (2)
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Here, we assume that F(z) and G(z,y) are in the form

F(zx) = Z oz a), Glzy = Z oz o) i(y;a), o€ Q(a).
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A

Also, we find a Macdonald analogue of the above:

differential operators — ¢-difference operators
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The operators are derived using combinatorics:
(6 2)ruig) _

+ji—1 i-1
a+j—1~—
(a§0‘)>\

the a-content
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The operators

The operators are derived using combinatorics:

@ Q) \ i i1
( ))\U(,]):a_i_j_l_l .
(a; )

the a-content
The diagonal operator N uses the Debiard-Sekiguchi operator

zmy:ﬁ5da@?%@@—g—mm+@)

)
1<i,j<n

where V(z) = [[,_;(2; — 2;) is the Vandermonde determinant. It acts
diagonally on (Jy) by

D) (Jy) = [[hi— (i=1)/a+ 1) - ]y

(2

Hong Chen Diff Eq Characterizing Hypergeometric Series 8/10



The operators

The operators are derived using combinatorics:

@ Q) \ i i1
( ))\U(,]):a_i_j_l_l .
(a; )

the a-content
The diagonal operator N uses the Debiard-Sekiguchi operator

zmy:ﬁ5da@?%@@—g—mm+@)

1<ij<n’
where V(z) = [[,_;(2; — 2;) is the Vandermonde determinant. It acts

diagonally on (Jy) by

D) (Jy) = [[hi— (i=1)/a+ 1) - ]y

(2

The lowering and raising operators use the action of e; = x; and
E =) %, together with the Laplace—Beltrami operator.
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The operators

The operators are derived using combinatorics:

@ Q) \ i i1
( ))\U(,]):a_i_j_l_l .
(a; )

the a-content

The diagonal operator N uses the Debiard-Sekiguchi operator

zmy:ﬁ5da@?%@m—g—mm+@)

)
1<i,j<n

where V(z) = [[,_;(2; — 2;) is the Vandermonde determinant. It acts
diagonally on (Jy) by

D) (Jy) = [[hi— (i=1)/a+ 1) - ]y

7
The lowering and raising operators use the action of e; = x; and
E =) %, together with the Laplace—Beltrami operator.

Similarly, in the Macdonald case, we used the Macdonald operator,
e1, and (a g¢-difference analogue of) Fj.
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An Example

We have the binomial formula and the Cauchy identity for ; Fy:

F=1Fy(a;x;a) = Z (a), J;t(a:;a) = H(l —z) Y

S NGO
Ia(z; ) I (y; - “1/a
Gleo(n/a;w7y;a):Z>\(j>\)(03(y): H(l_m’byj) 1/ .
A i,j=1

In this case, the operators are

ﬁ(z) = Z 04, N(z) = Z 204, R(z) = Z Ty (-Tzaz + a') )

and the Theorems read

N

£ fz

=RYW(F
:C' ( )?

_ nW
1_%% =RY(G).
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Thank you!

I am currently on the postdoctoral job market.
Please feel free to contact me if you are interested!

o Email: hc813@Qmath.rutgers.edu
o Slides: https://sites.math.rutgers.edu/~hc813/
o Preprint: arXiv:2510.10875
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