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Gauss
In 1812, Gauss presented to the Royal Society of Sciences at
Göttingen his famous paper.

In this paper, Gauss studied the Gauss hypergeometric series

2F1(a, b; c; z) = 1 +
ab
c

z
1! +

a(a + 1)b(b + 1)
c(c + 1)

z2

2!

+
a(a + 1)(a + 2)b(b + 1)(b + 2)

c(c + 1)(c + 2)
z3

3! + · · ·

=

∞∑
n=0

(a)n (b)n
(c)n

zn

n! ,

where
(a)n =

Γ(a + n)
Γ(a) = a(a + 1) · · · (a + n − 1)

is the Pochhammer symbol. Assuming that c ̸= 0,−1,−2, . . . , Gauss
proved that the series converges absolutely for |z| < 1, along with
many other properties.
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Euler’s equation

What interests us most is the following:

Theorem (Gauss, or Bateman Manuscript Project)
Gauss’s 2F1(a, b; c; z) is the unique solution of the Euler’s
hypergeometric differential equation

z(1 − z) d
2F
dz2 + (c − (a + b + 1)z) dF

dz − abF = 0, F(0) = 1,

subject to the condition that F(z) can be expressed as
∞∑

n=0
cnzn.
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pFq
As a natural generalization, hypergeometric series with more
parameters were studied thereafter:

pFq(a; b; z) =
∞∑

n=0

(a1)n · · ·
(
ap
)

n
(b1)n · · ·

(
bq
)

n

zn

n!

Theorem (Bateman Manuscript Project)
The series pFq(a; b; z) is the unique solution ofz d

dz

q∏
k=1

(
z d

dz + bk − 1
)
− z

p∏
k=1

(
z d

dz + ak

) (F) = 0, F(0) = 1,

subject to the condition that F(z) can be expressed as
∑∞

n=0 cnzn.

The differential equation has two parts: diagonal (zn → zn) and
raising (zn → zn+1). The DE is derived using combinatorics:

(a)n+1
(a)n

= a + n.
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Macdonald’s series
Around 1988, Macdonald introduced the following series in his
manuscripts, [arXiv:1309.4568, 1309.5208], associated with Jack and
Macdonald polynomials in the variables x = (x1, . . . , xn) and
y = (y1, . . . , yn),

pFq(a; b;x;α) =
∑
λ

(a;α)λ
(b;α)λ

α|λ| Jλ(x;α)
jλ(α)

pFq(a; b;x,y;α) =
∑
λ

(a;α)λ
(b;α)λ

α|λ| Jλ(x;α)
jλ(α)

Jλ(y;α)
Jλ(1;α)

rΦs(a; b;x; q, t) =
∑
λ

(a; q, t)λ
(b; q, t)λ

tn(λ) Jλ(x; q, t)
jλ(q, t)

rΦs(a; b;x,y; q, t) =
∑
λ

(a; q, t)λ
(b; q, t)λ

tn(λ) Jλ(x; q, t)
jλ(q, t)

Jλ(y; q, t)
Jλ(tδ; q, t)

Here, the sums run over partitions with at most n parts,
(·;α)λ and (·; q, t)λ generalize the usual Pochhammer symbol (·)n,
Jλ(α) and Jλ(q, t) are Jack and Macdonald polynomials in the dual
form and the unital form.
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Differential and q-difference equations

• When x is a single variable z

Jack series pFq(a; b;x;α) −→ hypergeometric series pFq(a; b; z)
Macdonald series rΦs(a; b;x; q, t) −→ q-series rϕs(a; b; z; q)

Differential and q-difference equations for these series, for any p, q, r, s.

• When α = 2, the zonal case, pFq(a; b;x;α = 2) has been studied in
multivariate statistics since 1950s.
Differential equations for p ⩽ 3 and q ⩽ 2, by the work of [Muirhead
1970], [Constantine–Muirhead, 1972] and [Fujikoshi, 1975].

• In the general Jack and Macdonald case, for p ⩽ 2, q ⩽ 1: [Yan,
1992], [Kaneko, 1993], [Baker–Forrester 1997] and [Kaneko, 1996].

• In our recent papers, [C.–Sahi, 2510.10875] and [C., to be posted],
we find differential and q-difference equations for the Jack and
Macdonald case (resp.) for any p, q, r, s; unifying/generalizing all
previous results.
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Our results
For the Jack case, we find differential operators L (lowering), N
(diagonal), R (raising), depending on a, b, α.

Theorem 1 pFq(a; b;x;α) is the unique solution of(
R(x) −N (x)

)
(F(x)) = 0, F(0) = 1. (1)

Theorem 2 pFq(a; b;x,y;α) is the unique solution of(
L(x) −R(y)

)
(G(x,y)) = 0, G(0, 0) = 1. (2)

Here, we assume that F(x) and G(x,y) are in the form

F(x) =
∑
λ

cλJλ(x;α), G(x,y) =
∑
λ

cλJλ(x;α)Jλ(y;α), cλ ∈ Q(α).

Also, we find a Macdonald analogue of the above:

differential operators −→ q-difference operators
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The operators
The operators are derived using combinatorics:

(a;α)λ∪(i,j)

(a;α)λ
= a + j − 1 − i − 1

α︸ ︷︷ ︸
the α-content

.

The diagonal operator N uses the Debiard–Sekiguchi operator

D(t) := 1
V(x) det

(
xn−j

i
(
xi∂i − (j − 1)/α+ t

))
1⩽i,j⩽n

,

where V(x) =
∏

i<j(xi − xj) is the Vandermonde determinant. It acts
diagonally on (Jλ) by

D(t)(Jλ) =
∏

i
(λi − (i − 1)/α+ t) · Jλ.

The lowering and raising operators use the action of e1 =
∑

xi and
E1 =

∑
∂
∂xi

, together with the Laplace–Beltrami operator.
Similarly, in the Macdonald case, we used the Macdonald operator,
e1, and (a q-difference analogue of) E1.
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An Example
We have the binomial formula and the Cauchy identity for 1F0:

F = 1F0(a;x;α) =
∑
λ

(a)λ
Jλ(x;α)

jλ(α)
=

n∏
i=1

(1 − xi)
−a,

G = 1F0(n/α;x,y;α) =
∑
λ

Jλ(x;α)Jλ(y;α)
jλ(α)

=

n∏
i,j=1

(1 − xiyj)
−1/α.

In this case, the operators are

L(x) =
∑

i
∂i, N (x) =

∑
i

xi∂i, R(x) =
∑

i
xi (xi∂i + a) ,

and the Theorems read

N (x)(F) = F · a
∑

i

xi
1 − xi

= R(x)(F),

L(x)(G) = G · 1
α

∑
i,j

yj
1 − xiyj

= R(y)(G).
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Thank you!

I am currently on the postdoctoral job market.
Please feel free to contact me if you are interested!

Email: hc813@math.rutgers.edu
Slides: https://sites.math.rutgers.edu/~hc813/
Preprint: arXiv:2510.10875

https://sites.math.rutgers.edu/~hc813/

