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Today: fix n > 1 the number of variables, z = (z1,. .., Z,).
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Today: fix n > 1 the number of variables, z = (z1,. .., Z,).
The classical AM—GM inequality asserts that

n

Z /T Ty,

z € [0,00)™
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Today: fix n > 1 the number of variables, z = (z1, ..., z,).
The classical AM—GM inequality asserts that

Tt T

- > x xy, x€[0,00)"

When n = 2, Ty /2y, implicit in Euclid’s Elements (c. 300 BC)

(=] =l = QA
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Today: fix n > 1 the number of variables, z = (z1, ..., z,).
The classical AM—GM inequality asserts that

B A T, we [0,00)"
n

When n = 2, %’ > /zy, implicit in Euclid’s Elements (c. 300 BC)

Substituting z; — 27, we have

w’f+...+x2>x1...xn
= )
n 1

z € [0,00)". (1)

The denominator = number of terms in the numerator = numerator
evaluated at 1 = (1,...,1).

(=] =l = QA
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Today: fix n > 1 the number of variables, © = (z1, ..., z,).

The classical AM—GM inequality asserts that

T4+ 2y

- > x xy, x€[0,00)"

When n =2, £¥ > | /7y, implicit in Euclid’s Elements (c. 300 BC)
Substituting z; — 7', we have

AT s B e 0,00 &)

n

The denominator = number of terms in the numerator = numerator
evaluated at 1 = (1,...,1).

There are various generalizations of this classical inequality, see for
example, [G.H. Hardy, J.E. Littlewood, G. Pédlya, Inequalities, 1934.]
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Muirhead’s inequality (1902) states that

. m(z) _ my()
A dominates y <— ——~ > ——
7 ma@) 7 m()

z € [0,00)™
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Muirhead’s inequality (1902) states that

: ma(e) _ mu() n
A dominates p <~ (D) > (1)’ z € [0,00)". (2)

e A= (A,...,\n),u=(u1,...,pn) € Z™ are partitions.

ALz 2 A

WV

0.

e We say A dominates u, denoted by A = p, if

AL =
A4+ Ao = pg + po

MAF Ann 4

N =AM+ A1+ A =1+ + o1 + i = |
=] 5 = =
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Muirhead’s inequality (1902) states that

: ma(z) o myu(2) n
A dominates i <= #(1) > (1)’ z € [0,00)". (2)

e )\ and p are partitions
e m, is the monomial symmetric polynomial

ma() =Yt = af
n

where 1 runs over distinct permutations of A.

[m] = =
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Muirhead’s inequality (1902) states that

ma(z) _ my()

A dominates y <— ——< > ——,
SRNCVRSETEY

e )\ and p are partitions
e m) is the monomial symmetric polynomial

— _m ,
my(z) = g o, =gl
n

where 7 runs over distinct permutations of .
In particular, the AM-GM inequality can be recovered: (n) = (17),

m(n)(x):$711+"'+$Z>931"'5Cn:m(l”)(x) CL’G[O oo)n
m(n)(l) n 1 m(ln)(l)’ ’
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Newton’s inequality (1707) states that (¢ fg ) is log-concave:

ex(1) ex(z) _ exr1(7) ex—1(2) .
er(1) ex(1) 2 (1) epr (1)’ z € [0,00)™ (3)

e ¢ is the kth elementary symmetric polynomial

@)= > @y, ek(1)=(">.

k
i <<

[m] = -
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€k

Newton’s inequality (1707) states that (< g’; )k is log-concave:

en(2) en(z) _ ewt1(2) ex—1(2)
er(1) en(1) ~ ena(1) ex1(1)’

e ¢ is the kth elementary symmetric polynomial

a@= > ek(1)<z>.

i1 <o <y

z € [0,00)". (3)

Cuttler-Greene-Skandera (2011) generalized Newton’s inequality into

ex () _ ew(®)
ex(D) ~ ew()’

e )\ is the conjugate of A and ey = ex, e,

Az p = z € [0,00)". (4)
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Young diagram:

Y

A= (4737232) s = (33373v2)
N=(4,4,21) < 4 =(44,3)

For || = |p], we have A = p <= o/ = N

(=] =l = QA
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Cuttler—Greene—Skandera:

A=

ool e

, z€[0,00)".
6)\/(1) i 8”/(1) [ )
recovered:

Let N = (k k) < p' = (k+ 1,k — 1), then Newton’s inequality can be

ex(z) ex(x)

er+1(7) er—1(7)
eo(1) en(1) =

exr1(1) er—1(1)’

z € [0,00)".
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Gantmacher’s inequality (1959) states that (pg(z))y is log-convex:
Pry1(2)pr-1(2) = pr(2)pr(2),
e p; is the power sum

z € [0,00)".

k() = sz’ k(1) =n
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Piy1(2) pr—1(2) < Pi() pr(7)
Prp1(1) pr—1(1) ~

® p; is the power sum

pr(1) pr(1)’

z € [0,00)".

pr(z) = Z 7, p(1)=n
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Gantmacher’s inequality (1959) states that (pg(z))y is log-convex:

Pt (@) per () - pu(a) pi(o) .
P pa ()~ @ 70" (5)

® p; is the power sum
n
pr(@) =D af, pe(1) =n.
i=1

Cuttler—Greene—Skandera generalized Gantmacher’s inequality into

r(3) _ pula)
NOREAO)

A= p = z € [0,00)". (6)

® DX = DX P,
Taking A = (k+ 1,k — 1) = u = (k, k) recovers Gantmacher’s
inequality
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Schur proved (Z’;Efg )k is log-convex
hiey1(2) hp—1(2) _ hi(z) hi(2)
P , z€l0,00)" 7
() (1)~ b1 () 7 "

® iy is the kth complete homogeneous symmetric polynomial

hi(z) = Z Tiy 0 Ty = Z mx

i1 g A=k

[} il -
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Schur proved (Z’;Ezg )k is log-convex

Pir1(2) b1 (2) _ ha() () §
hiy1(1) hr—1(1) z hi(1) hi(1) z € [0,00)".

® iy is the kth complete homogeneous symmetric polynomial

hi(z) = Z Tiy 0 Ty = Z mx

i1 g A=k

Cuttler—Greene—Skandera proved

ha(z) _ hy(2) n
ANz = hi(1)>h:(1)’ z € [0,00)™

® hx=hx - hy

n

[} il -
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Schur proved (Z’;Efg )k is log-convex
b1 (2) h—1(2) _ Pi(z) hi(2)
hir1 (1) b1 (1)~ (1) he(1)”
® iy is the kth complete homogeneous symmetric polynomial

hi(z) = Z Tiy 0 Ty = Z mx

i1 g A=k

z € [0,00)".

Cuttler—Greene—Skandera proved

hx(z) S ()
hA(1) ~ hu(1)’

Azp = z € [0,00)™

o hy=nhy - hy,
What about <—7?

(=} [t -
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Schur proved (Z’;Ezg )k is log-convex

1

hii1(2) P (2) () hui(2)
hir1 (1) b1 (1)~ (1) he(1)”

® iy is the kth complete homogeneous symmetric polynomial

hi(z) = Z Tiy 0 Ty = Z mx

i1 g A=k

z € [0,00)".

Cuttler—Greene—Skandera proved

M) -
(1)~ (1)’

Azp = z € [0,00)™
[ ] hA:h}\lu'hAn

What about <=7

For |A| = |pu| < 7, true.

(=} [t -
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)

Schur proved ( )k is log-convex

5 (1

s (a) P2 (a) _ al) huo)
hip1 (1) b1 (1) 7 (1) h(1)

e fy; is the kth complete homogeneous symmetric polynomial

> mm =y my

CESEIN A=k

e [0,00)". (7)

Cuttler—Greene—Skandera proved

M (@) _ h(a)

A# :> = b
H ha(1) = h(1)

z € [0,00)". (8)

[ ] h)\ = h>\1 h,\n

What about <=7

For |A| = |pu| < 7, true.

For |A| = || > 8, FALSE! See [Xu—Yao, arXiv:2505.08149].

_ (94 _ 5 a1 k() S hu(o)
For example A = (2%) % p = (3,1°), but still RO O
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Having seen

(X=p = ba(2) > bu(a), z€(0,00)"|
for the bases (by) with by (x)

)

_ ma(z) ey(z) prlz)
ma(1)? ey (1)7 pa(1)”
Cuttler—Greene-Skandera asked if this is true for Schur polynomials.
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Having seen

n *
‘)\>M<:> br(z) = bu(z), z€0,00) \ (*)

. N /() T
for the bases (b)) with by(z) = miglg, zi/(f), Ziglg'

Cuttler—Greene—Skandera asked if this is true for Schur polynomials.
e Schur polynomial sy is defined as

B det(x;\j+n7'j)

© det(a)

= det(hx,—i1;) = det(ex;—it)

= character of GL,(C)-modules

= Frobenius characteristic of Sg-modules
= spherical function for (GL,(C), U,)

= generating function of semi-standard Young tableaux

sa(x)
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Having seen

[N i = ba(@) > b(). € (0,50)"] *)

3 _ ( ey (z)
for the bases (by) with by (¢) = T2, 24, B
Cuttler—-Greene—Skandera asked if this is true for Schur polynomials.

oz el ©)

[m] [l -
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Having seen

n *
(Ve = @) > bu(), 2€(0,00)"] ()

; — ma(@) ex(x) pa(z)
for the bases (bx) with bx(z) = 2455, NIOL ROR

Cuttler—Greene—Skandera asked if this is true for Schur polynomials.

z € [0,00)", (9)

Cuttler—Greene—Skandera proved <= and conjectured —> .
Later, proved by Sra (2016), using Harish-Chandra-Ttzykson—Zuber
integral and AM-GM inequality.
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What if [\ # |u]?

We say A weakly dominates p, denoted by A =y, p
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What if [\ # |u]?

We say A weakly dominates p, denoted by A =y p if

A1 2>
A1+ A2 2 g+ pe
ALt A 2
Al=X A+ A+ An >

T E

L

1+"'+/1'n—1+,ufn

= |pl.
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What if [\ # |u]?

We say A weakly dominates p, denoted by A =y
Khare and Tao (2021) proved

AFw =

z€[1,00)"
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What if [\ # |u|?

We say A weakly dominates p, denoted by A =y, p
Khare and Tao (2021) proved

AFw =

() 5u(0)
NOREOL

z € [l,00)"
saa(z+1) < su(z+1)
8)\(1) -

su(1) 7

z € [0,00)",

(10)

«4O0>» «F)»r « =>»

i
-

DA




Schur sy
More?

What if [\ # |u|?

We say A weakly dominates p, denoted by A =y u
Khare and Tao (2021) proved

(@), su(o)

A=y b = > , z€[l,00)"
B LW T sy TEe)

sa(z+1) _ su(z+1) n
= , x€][0,00)" 10
ENC WY S
Take by(z) = 3 (fg, then we have
|>\ v = ba(z+1) = by(z+1), z€ [O,oo)n| (%)

[m] = -
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for by(z) =

ma(z) ex(z) pa(z) sx(x)
mx(1)7 exr(1)7 pa(1)? sa(1)”

(\=p = ba(2) > bu(a), z€(0,00)"|

|)\ Fw b = b(z+1) = b,(z+1), z€ [0,oo)n|
— alm)
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Schur sy
More?

ma(z) ex(x) pa(z) sx()

(\=p = ba(2) > bu(a), z€(0,00)"|
for bA(2) = 5@ ev D (@ D)

*)

for by(x) = 2.

Nmwp = ba(a+1) > b(e+1), z€[0,00)"|

For example, by(z)

(**)

Question: Is (**) true for other bases?

_ ma(z) ex(z) pa(m)

T oma(1)7 e (1) pa(1)”
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Schur sy
More?

(\=p = ba(2) > bu(a), z€(0,00)"|

_ ma@) en(®) pa(e) s
for bx(2) = @ 50 @ o)

Nmwp = ba(a+1) > b(e+1), z€[0,00)"|

for by(z) = 22

Sx (1) :
Question: Is (**) true for other bases?
— ma(@) ex(x) pa(z)
For example, by (z) = mi(l), AIOL pi(l)'
Answer: Yes! We will see this later.

[m] = -
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Dominance
Weak dominance Schur sy
Containment More?

Relation

[Vrn = (@) > bu(a), €[0,00)"] ()

_ ma@) en(®) pa(e) s
for b(2) = T30 ex ) () sx(D)-

‘)\ Fw it = ba(z+1)=>b,(z+1), ze€ [O,oo)"‘ (**)

for by(z) = iig;

Question: Is (**) true for other bases?

ma(z) exr(z) pa(z)

mx(1)7 ex (1) pa(1)”

Answer: Yes! We will see this later.

Question: Is there another such equivalence between a partial order
on partitions and positivity on symmetric functions? How are these

equivalences related?

For example, by(z) =

Hong Chen (Rutgers) Partial orders & Positivity
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Dominance
Weak dominance Schur sy
Containment More?

Relation

[Vr = (@) > bu(), 2€[0,00)"] ()

_ ma@) en(® pa(@) s
for b(2) = T50) e o) (D)

Nrwn = b+ D) > b(at+1), we0,00)"] ()

for by(w) = 2.

Question: Is (**) true for other bases?

ma(z) ex(z) pa(z)

mx (1) ey (1) pa(1)”

Answer: Yes! We will see this later.

Question: Is there another such equivalence between a partial order
on partitions and positivity on symmetric functions? How are these
equivalences related?

Answer: Yes! This is the motivation of our first, paper 2403.02490.

For example, by(z) =

Hong Chen (Rutgers) Partial orders & Positivity
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Schur sy

Jack Py ()

Macdonald Py (q,t)

Binomial formulas for Jack polynomials
Jack positivity

E. 1

The binomial formula for Schur polynomials is

o S e

vCA

where the expansion coefficients are called generalized binomial
coefficients. They were first studied by Lascoux (1978) to compute

Chern classes for exterior and symmetric squares of vector bundles.
See also [Macdonald, p. 47, Example 10].

[m] = -
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Schur sy

Dominance Jack Py ()
Weak dominance Macdonald P (g, t)
Containment Binomial formulas for Jack polynomials
Relation Jack positivity
Example

The binomial formula for Schur polynomials is

S-S0

vCA

where the expansion coefficients are called generalized binomial
coefficients. They were first studied by Lascoux (1978) to compute
Chern classes for exterior and symmetric squares of vector bundles.
See also [Macdonald, p. 47, Example 10].

e We say A contains u, A D pu, if \; > p; for i=1,... n.

Hong Chen (Rutgers) Partial orders & Positivity 12 /27



Schur sy

Dominance Jack Py (a)
Weak dominance Macdonald P (g, t)
Containment Binomial formulas for Jack polynomials
Relation Jack positivity

Example

The binomial formula for Schur polynomials is

S-S0

vCA

where the expansion coefficients are called generalized binomial
coefficients. They were first studied by Lascoux (1978) to compute
Chern classes for exterior and symmetric squares of vector bundles.
See also [Macdonald, p. 47, Example 10].

e We say A contains u, A D pu, if \; > p; for i=1,... n.

Theorem (Sahi 2011, C.—Sahi 2024)

Positivity If X D v, then (ﬁ) > 0; and (i) = 0 otherwise.
Monotonicity If X D p then (i) = (’V‘) >0 for any v.

Hong Chen (Rutgers) Partial orders & Positivity 12 /27



The binomial formula gives

S)\(l)

@+l s(z+1l)
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Schur sy
Jack Py ()
Macdonald Pjy (g, t)

Binomial formulas for Jack polynomials
Jack positivity

Example

The binomial formula gives

sx(z+1) B su(z+1) Z <)\> B <,u> su()

sx(1) su(1) ~ v v) ) s(1)

If A D p, then by the monotonicity, (ﬁ) — (") = 0 for any v. Namely,
the difference is Schur positive.

[m] = =
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Schur sy

Jack Py ()

Macdonald Py (q,t)

Binomial formulas for Jack polynomials
Jack positivity

Example

The binomial formula gives

-2 (0-0)3

v

If A D p, then by the monotonicity, () — (*) > 0 for any v. Namely,
the difference is Schur positive.

Conversely, if A 2 p, then for v = u, we have (1’)) =0 and (5) =1,
and the difference is not Schur positive.

[m] = -
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Schur sy

Dominance Jack Py (a)
Weak dominance Macdonald P (g, t)
Containment Binomial formulas for Jack polynomials
Relation Jack positivity

Example

The binomial formula gives

o -2 () -0)) i

v

If A Dy, then by the monotonicity, (3) — (*) > 0 for any v. Namely,
the difference is Schur positive.

Conversely, if A 2 u, then for v = u, we have (l)j) =0 and (‘Ij) =1,
and the difference is not Schur positive.

s\(z+1)  su(z+1)
sx(1) s(1)

ADp <= is Schur positive (11)

Hong Chen (Rutgers) Partial orders & Positivity
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Schur sy

Dominance Jack Py (a)
Weak dominance Macdonald P (g, t)
Containment Binomial formulas for Jack polynomials
Relation Jack positivity

Example

The binomial formula gives

-2 (0-0)3

v

If A Dy, then by the monotonicity, (3) — (*) > 0 for any v. Namely,
the difference is Schur positive.

Conversely, if A 2 u, then for v = u, we have (l)j) =0 and (‘Ij) =1,
and the difference is not Schur positive.

s\(z+1)  su(z+1)

A2n= T T s

is Schur positive (11)

\/\ Dp e by(z+1)—by(z+1)is b—positive‘ (%)

Question: Is (***) true for more bases?
Question: How are (*), (**), (***) related?

Hong Chen (Rutgers) Partial orders & Positivity
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Jack polynomials P («) were introduced by Jack in 1970s, as a
unification of Schur polynomials and zonal polynomials (spherical
function for (GL,(R), O,))
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Schur sy

Jack Py ()

Macdonald Py (q,t)

Binomial formulas for Jack polynomials
Jack positivity

Example

Jack polynomials Py («) were introduced by Jack in 1970s, as a

unification of Schur polynomials and zonal polynomials (spherical
function for (GL,(R), 0,)).

They can be defined as follows:
(Pa(a), Pu(a))a =0, A#p
Px(a) = Z Kyu(a)my, Kon=1

B

[m] = -
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Schur sy

Dominance Jack Py ()
Weak dominance Macdonald P (g, t)
Containment Binomial formulas for Jack polynomials
Relation Jack positivity

Example

Jack polynomials Py («) were introduced by Jack in 1970s, as a
unification of Schur polynomials and zonal polynomials (spherical
function for (GL,(R), O,)).

They can be defined as follows:

<PA( )s Pu(@))a =0, AF#p
(@)= Kyula)m,, Kun=1
<A
They depend on a parameter «:
e a=0, Py(a) = exn
e a=1, Py(a) = s\
o =2, Py(a) = zonal

° a — 00, Py(a) = my

Hong Chen (Rutgers) Partial orders & Positivity 14 /27



1980s.

Macdonald polynomials Pj (g, t) were introduced by Macdonald in
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Schur sy
Jack Py ()
Macdonald P) (g, t)

Binomial formulas for Jack polynomials
Jack positivity

Example

Macdonald polynomials P,(g¢, t) were introduced by Macdonald in
1980s.
They can be defined as follows:

<P>\(q) t)aP;L(qa t))q,t=0, )\75#

P)\(Qa t) = Z K)xu(q, t)m;u KA)\ =1
KA

[m] [l -
_ Partial orders & Positivity
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Schur sy

Jack Py ()

Macdonald Py (q,t)

Binomial formulas for Jack polynomials
Jack positivity

Example

Macdonald polynomials P,(g¢, t) were introduced by Macdonald in
1980s.

They can be defined as follows:

<P)\(q,t),P (q, )) t—O )\#ILL

PA(Q? t) = Z K)xu q, t)m;u KA)\ =1
T

They depend on two parameters g, t:

g=1t, Px(q,t) = sx

t=1, Pa(g t) = my

q=1, Px(q,t) = ex

q = 0, Hall-Littlewood; ¢t = 0, ¢-Whittaker
lim Py(1%, 1) = Pr(a)

[m] = -
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Schur sy
Jack Py ()
Macdonald Py (q,t)

Binomial formulas for Jack polynomials
Jack positivity

Example

The binomial formula for Schur polynomials was generalized to the

Jack setting in the 1990s, by Kaneko, Knop—Sahi, Lassalle,
Okounkov—Olshanski:

sx(z+1) A\ su(2)

w0
Pi(z+1;a) A\ Pu(ma)
Py(1;c) VZO\ (V)a P,(1;a)

[m] = =
_ Partial orders & Positivity
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Schur sy

Dominance Jack Py (a)
Weak dominance Macdonald P (g, t)
Containment Binomial formulas for Jack polynomials
Relation Jack positivity
Example

The binomial formula for Schur polynomials was generalized to the

Jack setting in the 1990s, by Kaneko, Knop—Sahi, Lassalle,
Okounkov—Olshanski:

RN ey

)
vCA
Pyx(z+1;0) A\ P.(z;«)
Py\(1;a) Z <1/>QP,,(1;0¢)

vCA

The binomial coefficients (ﬁ)a can be given by evaluation of
interpolation Jack polynomials, which are inhomogeneous

generalizations of Jack polynomials, introduced by Knop and Sahi.

They are rational polynomials in a.

Hong Chen (Rutgers) Partial orders & Positivity



Schur sy

Dominance Jack Py ()
Weak dominance Macdonald P (g, t)
Containment Binomial formulas for Jack polynomials

Relation Jack positivity
Example

Theorem (Sahi 2011, C.—Sahi 2024)

Positivity If X D v, then (’\)a > 0; and () = 0 otherwise.

v

Monotonicity If X D p then (l)j)a — (“)a >0 for any v.

v

Here, fla) > 0 means for any o € [0,00], fla) > 0.
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Schur sy

Dominance Jack Py (a)
Weak dominance Macdonald P (g, t)
Containment Binomial formulas for Jack polynomials

Relation Jack positivity
Example

Theorem (Sahi 2011, C.—Sahi 2024)

Positivity If X D v, then (;\)a > 0; and () = 0 otherwise.
Monotonicity If X D p then (l)j)a — (fj)a >0 for any v.

Here, fla) > 0 means for any o € [0,00], fla) > 0.

The binomial formula gives

Pﬁf&;ii)“) B Ppgf&z)a) > (@ ) @) 538”3

Hong Chen (Rutgers) Partial orders & Positivity 17/27



Schur sy

Dominance Jack Py (a)
Weak dominance Macdonald P (g, t)
Containment Binomial formulas for Jack polynomials
Relation Jack positivity
Example

Theorem (Sahi 2011, C.—Sahi 2024)

Positivity If X D v, then (;\)a > 0; and (ﬁ) = 0 otherwise.
Monotonicity If X D p then (l)j)a — (‘Ij)a >0 for any v.

Here, fla) > 0 means for any o € [0,00], fla) > 0.

The binomial formula gives
Pa(z+10) Pulz+Lio) Z AN (m P,(z; )
Py (1; ) P.(1;a) - v/, v),] Pu(l;a)

Py(z+1;0) P,(z+1;a) . .
ADp = - s Jack posit 12
ou Pr(L0) Pu(tia) is Jack positive (12)

Another example of (***):

‘)\ Dp <= b(z+1)—by(z+1)is b—positive‘ (%)

Hong Chen (Rutgers) Partial orders & Positivity 17/27



Schur sy
Jack Py ()
Macdonald Py (q,t)

Jack positivity
Example

Binomial formulas for Jack polynomials

Write Q) (z; ) = % and Qy(z; ) = O\ (24 1; ).

When a = 0,1, 00, Jack specializes to elementary, Schur, monomial.

Q and Q become: E and E Sy and SA, M and M.

B - = + 2 + 2 4
SR B at ot gt
ga]] - gm = SB:D + %SD:D + %SBH + 35]]] +
MBE M = Mgm + M +  3M + 2Mm +
o - 9o = 9o + BROD + BHop + WYem 4+
o =

_ Partial orders & Positivity
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QSH

3ME

3a+1
a+l

B

2FEH
250
2MH

209
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Dominance
‘Weak dominance
Containment
Relation

Schur sy
Jack Py (a)

Macdonald Py (g, t)

Binomial formulas for Jack polynomials
Jack positivity

Example

Write Qy(z; o) = % and Qy(z; ) = O\ (24 1; ).

When a = 0,1, co, Jack Spe(31ahzes to elementary, Schur, monomial.
Q and Q become: E and E Sy and SA, M and M.

E - = + 2 + 2B + 4Fn + F + 2
R I Ei & il gy e
S - 50 = S + ig + 85T + 35 + 254 + 29
o M o 350110 | | 0 0
M - M = M + M + M + oM + 3M— + 20
ms= ™ mnm| P m B O
55:] - O = o + o0 + b"“QBH + ZHom + TLIQH + 209

ADp < by(z+1)—bu(z+1)is b—positive‘ )

hOldS fOI' b}\ = Px(w;a) Y (I) SA(JU) 7YL>\(.’£)

Pr(L;a)? e/ (1) sa(1)? ma(l) and zonal.

Hong Chen (Rutgers) Partial orders & Positivity



Schur sy

Dominance Jack Py (o)
Weak dominance Macdonald P (g, t)
Containment Binomial formulas for Jack polynomials
Relation Jack positivity
Example

Write Qy(z; o) = % and Qy(z; ) = O\ (24 1; ).
When a = 0,1, co, Jack Spe(nahzes to elementary, Schur, monomial.

Q and Q become: E and E Sy and SA, M and M.

EHJ,EH:EHH+ 23§+ 2EBj+ 4EH+ B + 2

ga]] - §D] = SB:D + ’;SD:D + %Bj + 35T + 2SH + 254
A?Bjj - M = M + Mom + SMm + 2M@m + Mg + 2Mp
o - 9o = 9go + BReoo ¢ BHop ¢+ WYom ¢ Wieg + o

ADp = by(z+1)—by(z+1)is b—positive‘ )

_ Pa(mo) ex(m) sa(z) (z)
holds for by = py.ay: @) (@) 7 (@)

Surprisingly, also holds for power sum: by (z) = %&‘;). Proof by
induction on length of A.

and zonal.

Hong Chen (Rutgers) Partial orders & Positivity 18 /27



Summary

A lemma
)+ = (*%)
Conjecture

Partial results
Muirhead cone and semirin,

[N i = ba@) > b(), € (0,50)"] *)

_ en(@ 5@ ma@ pa
for ba(2) = S50 @ ma (@) pr (D)

Nmwp = bi(a+1) 2 b(e+1), z€(0,00)"| (¥
for by(x) = 2.
|>\ Dp = ba(z+1)—by(z+1)is b—positive| (**%)

_ Pa(ma) ex(z) sa(z) ma(z) pa(z)
for by = Hxtay Zi/(f), NOLENOL Zi(l) and zonal.

[m] = =

_ Partial orders & Positivity
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Summary

A lemma

)+ = (*%)
Conjecture

Partial results

Muirhead cone and semirin,

U

A=(55321) 2 u

(575a37 ]-) v (554)471)

- - m— Q>
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Summary

A lemma

)+ = (*%)
Conjecture

Partial results

Muirhead cone and semirin,

U
S\

A=(55321 2 pu=(5531) = v=(54,4,1)

Containment = removing boxes
Dominance = lowering boxes
Weak dominance = both

- - m— Q>

_ Partial orders & Positivity 20/27



Summary

Dominance A lemma
‘Weak dominance (EH)H=(E=) = (@59
Containment Conjecture
Relation Partial results
Muirhead cone and semiring
> . |

A=(5,5321) 2 u=(5531) = v=(54,4,1)

Containment = removing boxes
Dominance = lowering boxes
Weak dominance = both

If \ =« v, then Jp such that

ADp= .

= g = = =

Hong Chen (Rutgers) Partial orders & Positivity 20/27



A= p = bxa(z) > by(z), z€[0,00)"
Azw b <= b(z+1) > b,(z+1), z€[0,00)"
ADpu <= ba(z+1) —by(z+ 1) is b-positive

«4O0>» «F)»r « =>»

i
-

*)
(**)
(***)

DA



Summary

Dominance A lemma
Weak dominance () (F**) = (**)
Containment Conjecture
Relation Partial results

Muirhead cone and semiring

A= p = bxa(z) = by(z), z€]0,00)" (*)
Arw it <= ba(z+1) > by(z+1), z€]0,00)" (**)
ADp <= by(z+1)—by(z+1) is b-positive (%)

Let bx(z) be evaluation positive, namely, by(z) = 0, z € [0,00)™.
Then for the = direction: (*) + (***) = (**).
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Summary

Dominance A lemma

Weak dom.inance () (F*%) = (**)
Containment Conjecture
Relation Partial results
Muirhead cone and semiring
A= p = bxa(z) = by(z), z€]0,00)" (*)
Arw it <= ba(z+1) > by(z+1), z€]0,00)" (**)
ADp <= by(z+1)—by(z+1) is b-positive (%)

Assume A =y, v. By the lemma, Ju such that A D u = v
ba(z+1) — by (z+1) = (bra(z+1) — bu(z+1)) + (bu(z+1) — b(z+1

By (***), the former by(z+ 1) — b,(z+ 1) expands positively into
be(z), which is evaluation positive.
By (*), the latter b,(z+ 1) — b, (z+ 1) is evaluation positive. O

Hong Chen (Rutgers) Partial orders & Positivity
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Summary
Dominance A lemma

Weak dominance (F)+(F**) = (**)
Containment Conjecture
Relation Partial results

Muirhead cone and semiring

A= p = bxa(z) = by(z), z€]0,00)" (*)
Arw it <= ba(z+1) > by(z+1), z€]0,00)" (**)
ADp <= by(z+1)—by(z+1) is b-positive (%)

Let bx(z) be evaluation positive, namely, by(z) = 0, z € [0,00)™.
Then for the = direction: (*) + (***) = (**).

- @ ma) pal) g
In particular, (**) holds for by = IOL mi(l), gi(l), in addition to

Khare Tao’s result for 22
S,\(l)
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Summary

A lemma

)+ = (*%)
Conjecture

Partial results

Muirhead cone and semirin,

A= p <= bxa(z) = by(z), z€[0,00)" *)
AEw b = ba(z+1) > by(z+1), z€]0,00)" (**)
ADp <= bx(z+1) —bu(xz+ 1) is b-positive (**%)

_ ex(®) sa(z) ma(z) pa(w)
(*) and (**) hold for by = ei/(l), Si(l), mi(l), pi(l)

(***) holds for these + polynomials ﬁiﬁf’ig

_ Partial orders & Positivity
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Summary

Dominance A lemma
Weak dominance () (F**) = (*%)
Containment Conjecture
Relation Partial results

Muirhead cone and semiring

A= p = bxa(z) = by(z), z€]0,00)" (*)
AEw b = ba(z+1) > by(z+1), z€]0,00)" (**)
ADp <= bx(z+1) —bu(xz+ 1) is b-positive (**%)

(5 s ) bl o b = 568, 248 2482

(***) holds for these 4+ polynomials iiﬁfi?

Conjecture (C.—Sahi 2024)

(*) and (**) hold for by = PES.

= mid - = =
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Dominance
‘Weak dominance
Containment
Relation

Summary

A lemma

(%) = (*)
Conjecture

Partial results

Muirhead cone and semiring

A= p <= ba(z) >

b
Amw b <= ba(z+1)
) —

ADp <= b(z+1

u(fﬁ)v
2 bu(z+1),
b

z€[0,00)" ()
z € [0,00)" (**)

(***)

u (4 1) is b-positive

sax(@m) ma(z) pa(a)

(*) and (**) hold for by = 2.2

exr(1)? sx(1)? ma(1)’ pa(1)

(***) holds for these 4+ polynomials

Conjecture (C.—Sahi 2024)

Py (za)
Px(Lar)

(*) and (**) hold for by = PES.

Theorem (C.—Sahi 2024)

For by = I;*Ef z)

the <= direction in (*) and in (**) is true.

Also, the —> dzrectwn in (*) implies the = direction in (**).

Hong Chen (Rutgers)

Partial orders & Positivity
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Summary

Dominance A lemma
Weak dominance (F)+(F**) = (**)
Containment Conjecture
Relation

Partial results
Muirhead cone and semiring

Theorem (C.—Khare-Sahi 2025

If X and p have at most two parts, then (*) holds for by = ?ngg.
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Dominance
‘Weak dominance
Containment
Relation

Summary

A lemma

() **) = (**)
Conjecture

Partial results

Muirhead cone and semiring

Theorem (C.—Khare-Sahi 2025)

If X and p have at most two parts, then (*) holds for by =

Py (z;c0)
P,\(l a) :

All such partitions are in the form A =

P(a+b,a) (xl» 25 a) =

It suffices to prove for A =
explicit computation.

(d,0)

(z172)"

%= u=(d—1,1), which is done by

(a+ b, a). For n =2, we have

'P(b,o)(-’ﬂl,@;a)'

Hong Chen (Rutgers)
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Summary

Dominance A lemma
Weak dominance (EH)H=(E=) = (@59
Containment Conjecture
Relation Partial results
Muirhead cone and semiring

Theorem (C.—Khare-Sahi 2025)

If X and p have at most two parts, then (*) holds for by = %-

All such partitions are in the form A\ = (a+ b, a). For n = 2, we have

P(a+b,a)($1,$2;04) = (z122)" - P(b,())(l'h@;a)'

It suffices to prove for A = (d,0) = u = (d— 1, 1), which is done by

explicit computation. For n > 2, we use the followmg lemma. E])

Hong Chen (Rutgers) Partial orders & Positivity 23 /27



Summary

Dominance A lemma

Weak dominance () (F**) = (**)
Containment

Conjecture
Relation

Partial results
Muirhead cone and semiring

Theorem (C.—Khare-Sahi 2025)

If X\ and p have at most two parts, then (*) holds for by = Ilzi(f Zg

All such partitions are in the form A\ = (a+ b, a). For n = 2, we have

Patb,a) (21,225 0) = (1122)" - P(p,0) (71, 725 ).

It suffices to prove for A = (d,0) = u = (d— 1, 1), which is done by
explicit computation. For n > 2, we use the followmg lemma. O

Lemma (C.—Khare—Sahi 2025)

For Jack polynomials, if (*) holds for n variables, then it holds for
n+ 1 variables.

Hong Chen (Rutgers) Partial orders & Positivity 23 /27



Summary

A lemma

Y+ %) = (*%)
Conjecture

Partial results

Muirhead cone and semirin,

Let My (z) = 2.

The Muirhead cone M ¢ consists of non-negative combinations of
{My = My [ A2 p}

and Muirhead semiring Mg consists of non-negative combinations
of products of

{My — M| A2 b U M| A}

(=] =l = QA

_ Partial orders & Positivity 24/27



Summary

Dominance A lemma
Weak dominance () (F**) = (**)
Containment Conjecture
Relation Partial results
Muirhead cone and semiring

Let My (z) = 243,

The Muirhead cone M ¢ consists of non-negative combinations of
{M/\ - Mu | AD H}

and Muirhead semiring Mg consists of non-negative combinations
of products of

{My = M, | A 2} U{My| A}
By Muirhead’s inequality, functions in M ¢ and Mg are evaluation

positive.
They encode more information than evaluation positive.

Hong Chen (Rutgers) Partial orders & Positivity
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Summary

A lemma
)+ = (*%)
Conjecture

Partial results
Muirhead cone and semirin,

Cuttler—Greene—Skandera showed that for A = p,

ev(@) ew(®) palz)  pule)

ex(1) eM(l)’ (1) - pu(1) € Mg (13)

jus = -

_ Partial orders & Positivity
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Summary

Dominance A lemma
Weak dominance () (F**) = (*%)
Containment Conjecture
Relation Partial results

Muirhead cone and semiring

Cuttler—Greene—Skandera showed that for A\ =

8

ex(z)  ew(x) palz)  pulz)
€>\(1) B eu(l)’ p,\(l) pu(l) € Mg (13)

Conjecture (C.—Khare-Sahi 2025)

If X = 1, then P*Ef’zg i, Efg) € Ms.
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Summary

Dominance A lemma
Weak dominance (%) (%) =5 (%%)
Containment

Conjecture
Relation

Partial results
Muirhead cone and semiring

Cuttler—Greene—Skandera showed that for A\ =

ex(z)  ew(x) palz)  pulz)
ex(1) B eu(l)’ pa(l) pu(l) € Mg (13)

8

Conjecture (C.—Khare-Sahi 2025)

If X = 1, then ?igz; i, ETZ) € Ms.

Theorem (C.—Khare—Sahi 2025)

For n =2, we have a stronger result: If X = p, then
Py (z;c0) P Py (z0)
Palia) ~ Pulta) © Mo

Hong Chen (Rutgers) Partial orders & Positivity 25 /27



Summary

Dominance A lemma
‘Weak dominance (F)+(F**) = (**)
Containment Conjecture
Relation Partial results

Muirhead cone and semiring

Cuttler—Greene—Skandera showed that for A\ =

ov(@ _er(@ pa(@) _pul@) o (13)

ex(1)  eu(1)” pa(l)  pu()

Conjecture (C.—Khare—Sahi 2025)

If X = 1, then P*Ef’z; 7 Efz) € Ms.

Theorem (C.—Khare—Sahi 2025)

For n =2, we have a stronger result: If X = p, then

Py (z;c0) P L (z;00)
Palia) ~ Pu(tia) € Mo

Note that Mg is strictly larger than M ¢: for n = 2,
2Mz) - (M(z) — M2,1)) = Ms) — M(51) — Ma2) + Mz 3) ¢ Mc

For n > 2, examples show that M ¢ is not enough.
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Dominance
‘Weak dominance
Containment
Relation

Summary
A lemma

(%) = (*)
Conjecture

Partial results

Muirhead cone and semiring

Conjecture (C.—Sahi 2024)

* _ Px(zmaq.t)
(*) holds for by = INCTOR
Theorem (C.—Khare—Sahi 2025)
For n=2, (*) holds for by = %
14, )
v
= - - - v
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Summary

Dominance A lemma
Weak dominance () (F**) = (**)
Containment Conjecture
Relation Partial results

Muirhead cone and semiring

Conjecture (C.—Sahi 2024)

_ Pa(z;9,1)
(*) holds for by = PiTgt)

Theorem (C.—Khare-Sahi 2025)

Forn: 2; ( ) hOldS fOr b)\ - %

Conjecture (C.—Khare-Sahi 2025)

Py (zq,t) P, ($§Q7t)
If X = p, then Pi(f;g,t) ~ P (Tan © Ms.

Theorem (C.—Khare-Sahi 2025)

For n =2, we have a stronger result: If \ = u, then

Px(z;q,t)  Pu(x;9,t)
PaTan ~ Pamiep € Mo

= = = = =
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Thank you!

hc813@math.rutgers.edu
arXiv:2403.02490, 2509.19649
slides: https://sites.math.rutgers.edu/~hc813/
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