
Partial orders on partitions
&

positivity on symmetric functions

Hong Chen

Rutgers

Combinatorics And Representation Theory Seminar
KIAS

Nov 27, 2025

Joint work with Apoorva Khare and Siddhartha Sahi
arXiv: 2403.02490, 2509.19649
slides: https://sites.math.rutgers.edu/~hc813/

https://arxiv.org/abs/2403.02490
https://arxiv.org/abs/2509.19649
https://sites.math.rutgers.edu/~hc813/


Dominance
Weak dominance

Containment
Relation

AM–GM inequality
monomial mλ
elementary eλ
power sum pλ
complete hλ
Schur sλ

Today: fix n ⩾ 1 the number of variables, x = (x1, . . . , xn).
The classical AM–GM inequality asserts that

x1 + · · ·+ xn
n ⩾ n

√x1 · · · xn, x ∈ [0,∞)n.

When n = 2, x+y
2 ⩾ √xy, implicit in Euclid’s Elements (c. 300 BC)

Substituting xi 7→ xn
i , we have

xn
1 + · · ·+ xn

n
n ⩾ x1 · · · xn

1 , x ∈ [0,∞)n. (1)

The denominator = number of terms in the numerator = numerator
evaluated at 1 = (1, . . . , 1).
There are various generalizations of this classical inequality, see for
example, [G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, 1934.]
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Muirhead’s inequality (1902) states that

λ dominates µ ⇐⇒ mλ(x)
mλ(1)

⩾ mµ(x)
mµ(1)

, x ∈ [0,∞)n. (2)
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Muirhead’s inequality (1902) states that

λ dominates µ ⇐⇒ mλ(x)
mλ(1)

⩾ mµ(x)
mµ(1)

, x ∈ [0,∞)n. (2)

• λ = (λ1, . . . , λn), µ = (µ1, . . . , µn) ∈ Zn are partitions.

λ1 ⩾ · · · ⩾ λn ⩾ 0.

• We say λ dominates µ, denoted by λ ≽ µ, if

λ1 ⩾ µ1

λ1 + λ2 ⩾ µ1 + µ2

...
λ1 + · · ·+ λn−1 ⩾ µ1 + · · ·+ µn−1

|λ| = λ1 + · · ·+ λn−1 + λn = µ1 + · · ·+ µn−1 + µn = |µ|
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Muirhead’s inequality (1902) states that

λ dominates µ ⇐⇒ mλ(x)
mλ(1)

⩾ mµ(x)
mµ(1)

, x ∈ [0,∞)n. (2)

• λ and µ are partitions
• mλ is the monomial symmetric polynomial

mλ(x) =
∑
η

xη, xη = xη11 · · · xηn
n ,

where η runs over distinct permutations of λ.
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Muirhead’s inequality (1902) states that

λ dominates µ ⇐⇒ mλ(x)
mλ(1)

⩾ mµ(x)
mµ(1)

, x ∈ [0,∞)n. (2)

• λ and µ are partitions
• mλ is the monomial symmetric polynomial

mλ(x) =
∑
η

xη, xη = xη11 · · · xηn
n ,

where η runs over distinct permutations of λ.
In particular, the AM–GM inequality can be recovered: (n) ≽ (1n),

m(n)(x)
m(n)(1)

=
xn

1 + · · ·+ xn
n

n ⩾ x1 · · · xn
1 =

m(1n)(x)
m(1n)(1)

, x ∈ [0,∞)n.
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Newton’s inequality (1707) states that ( ek(x)
ek(1) )k is log-concave:

ek(x)
ek(1)

ek(x)
ek(1)

⩾ ek+1(x)
ek+1(1)

ek−1(x)
ek−1(1)

, x ∈ [0,∞)n. (3)

• ek is the k-th elementary symmetric polynomial

ek(x) =
∑

i1<···<ik

xi1 · · · xik , ek(1) =
(

n
k

)
.

Cuttler–Greene–Skandera (2011) generalized Newton’s inequality into

λ ≽ µ ⇐⇒ eλ′(x)
eλ′(1) ⩾ eµ′(x)

eµ′(1) , x ∈ [0,∞)n. (4)

• λ′ is the conjugate of λ and eλ′ = eλ′
1
· · · eλ′

n
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Young diagram:

≽

λ = (4, 3, 2, 2) ≽ µ = (3, 3, 3, 2)
λ′ = (4, 4, 2, 1) ≼ µ′ = (4, 4, 3)

For |λ| = |µ|, we have λ ≽ µ ⇐⇒ µ′ ≽ λ′.
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Cuttler–Greene–Skandera:

λ ≽ µ ⇐⇒ eλ′(x)
eλ′(1) ⩾ eµ′(x)

eµ′(1) , x ∈ [0,∞)n.

Let λ′ = (k, k) ≼ µ′ = (k + 1, k − 1), then Newton’s inequality can be
recovered:

ek(x)
ek(1)

ek(x)
ek(1)

⩾ ek+1(x)
ek+1(1)

ek−1(x)
ek−1(1)

, x ∈ [0,∞)n.

Hong Chen (Rutgers) Partial orders & Positivity 6/27



Dominance
Weak dominance

Containment
Relation

AM–GM inequality
monomial mλ
elementary eλ
power sum pλ
complete hλ
Schur sλ

Gantmacher’s inequality (1959) states that (pk(x))k is log-convex:

pk+1(x)pk−1(x) ⩾ pk(x)pk(x), x ∈ [0,∞)n. (5)

• pk is the power sum

pk(x) =
n∑

i=1
xk

i , pk(1) = n.
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pk(x)
pk(1)

, x ∈ [0,∞)n. (5)

• pk is the power sum

pk(x) =
n∑

i=1
xk

i , pk(1) = n.

Cuttler–Greene–Skandera generalized Gantmacher’s inequality into

λ ≽ µ ⇐⇒ pλ(x)
pλ(1)

⩾ pµ(x)
pµ(1)

, x ∈ [0,∞)n. (6)

• pλ = pλ1 · · · pλn

Taking λ = (k + 1, k − 1) ≽ µ = (k, k) recovers Gantmacher’s
inequality
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Schur proved (hk(x)
hk(1) )k is log-convex

hk+1(x)
hk+1(1)

hk−1(x)
hk−1(1)

⩾ hk(x)
hk(1)

hk(x)
hk(1)

, x ∈ [0,∞)n. (7)

• hk is the k-th complete homogeneous symmetric polynomial

hk(x) =
∑

i1⩽···⩽ik

xi1 · · · xik =
∑
|λ|=k

mλ

Cuttler–Greene–Skandera proved

λ ≽ µ =⇒ hλ(x)
hλ(1)

⩾ hµ(x)
hµ(1)

, x ∈ [0,∞)n. (8)

• hλ = hλ1 · · · hλn

What about ⇐= ?
For |λ| = |µ| ⩽ 7, true.
For |λ| = |µ| ⩾ 8, FALSE! See [Xu–Yao, arXiv:2505.08149].
For example λ = (24) 6≽ µ = (3, 15), but still hλ(x)

hλ(1) ⩾ hµ(x)
hµ(1) .

Hong Chen (Rutgers) Partial orders & Positivity 8/27



Dominance
Weak dominance

Containment
Relation

AM–GM inequality
monomial mλ
elementary eλ
power sum pλ
complete hλ
Schur sλ

Schur proved (hk(x)
hk(1) )k is log-convex

hk+1(x)
hk+1(1)

hk−1(x)
hk−1(1)

⩾ hk(x)
hk(1)

hk(x)
hk(1)

, x ∈ [0,∞)n. (7)

• hk is the k-th complete homogeneous symmetric polynomial

hk(x) =
∑

i1⩽···⩽ik

xi1 · · · xik =
∑
|λ|=k

mλ

Cuttler–Greene–Skandera proved

λ ≽ µ =⇒ hλ(x)
hλ(1)

⩾ hµ(x)
hµ(1)

, x ∈ [0,∞)n. (8)

• hλ = hλ1 · · · hλn

What about ⇐= ?
For |λ| = |µ| ⩽ 7, true.
For |λ| = |µ| ⩾ 8, FALSE! See [Xu–Yao, arXiv:2505.08149].
For example λ = (24) 6≽ µ = (3, 15), but still hλ(x)

hλ(1) ⩾ hµ(x)
hµ(1) .

Hong Chen (Rutgers) Partial orders & Positivity 8/27



Dominance
Weak dominance

Containment
Relation

AM–GM inequality
monomial mλ
elementary eλ
power sum pλ
complete hλ
Schur sλ

Schur proved (hk(x)
hk(1) )k is log-convex

hk+1(x)
hk+1(1)

hk−1(x)
hk−1(1)

⩾ hk(x)
hk(1)

hk(x)
hk(1)

, x ∈ [0,∞)n. (7)

• hk is the k-th complete homogeneous symmetric polynomial

hk(x) =
∑

i1⩽···⩽ik

xi1 · · · xik =
∑
|λ|=k

mλ

Cuttler–Greene–Skandera proved

λ ≽ µ =⇒ hλ(x)
hλ(1)

⩾ hµ(x)
hµ(1)

, x ∈ [0,∞)n. (8)

• hλ = hλ1 · · · hλn

What about ⇐= ?
For |λ| = |µ| ⩽ 7, true.
For |λ| = |µ| ⩾ 8, FALSE! See [Xu–Yao, arXiv:2505.08149].
For example λ = (24) 6≽ µ = (3, 15), but still hλ(x)

hλ(1) ⩾ hµ(x)
hµ(1) .

Hong Chen (Rutgers) Partial orders & Positivity 8/27



Dominance
Weak dominance

Containment
Relation

AM–GM inequality
monomial mλ
elementary eλ
power sum pλ
complete hλ
Schur sλ

Schur proved (hk(x)
hk(1) )k is log-convex

hk+1(x)
hk+1(1)

hk−1(x)
hk−1(1)

⩾ hk(x)
hk(1)

hk(x)
hk(1)

, x ∈ [0,∞)n. (7)

• hk is the k-th complete homogeneous symmetric polynomial

hk(x) =
∑

i1⩽···⩽ik

xi1 · · · xik =
∑
|λ|=k

mλ

Cuttler–Greene–Skandera proved

λ ≽ µ =⇒ hλ(x)
hλ(1)

⩾ hµ(x)
hµ(1)

, x ∈ [0,∞)n. (8)

• hλ = hλ1 · · · hλn

What about ⇐= ?
For |λ| = |µ| ⩽ 7, true.
For |λ| = |µ| ⩾ 8, FALSE! See [Xu–Yao, arXiv:2505.08149].
For example λ = (24) 6≽ µ = (3, 15), but still hλ(x)

hλ(1) ⩾ hµ(x)
hµ(1) .

Hong Chen (Rutgers) Partial orders & Positivity 8/27



Dominance
Weak dominance

Containment
Relation

AM–GM inequality
monomial mλ
elementary eλ
power sum pλ
complete hλ
Schur sλ

Schur proved (hk(x)
hk(1) )k is log-convex

hk+1(x)
hk+1(1)

hk−1(x)
hk−1(1)

⩾ hk(x)
hk(1)

hk(x)
hk(1)

, x ∈ [0,∞)n. (7)

• hk is the k-th complete homogeneous symmetric polynomial

hk(x) =
∑

i1⩽···⩽ik

xi1 · · · xik =
∑
|λ|=k

mλ

Cuttler–Greene–Skandera proved

λ ≽ µ =⇒ hλ(x)
hλ(1)

⩾ hµ(x)
hµ(1)

, x ∈ [0,∞)n. (8)

• hλ = hλ1 · · · hλn

What about ⇐= ?
For |λ| = |µ| ⩽ 7, true.
For |λ| = |µ| ⩾ 8, FALSE! See [Xu–Yao, arXiv:2505.08149].
For example λ = (24) 6≽ µ = (3, 15), but still hλ(x)

hλ(1) ⩾ hµ(x)
hµ(1) .

Hong Chen (Rutgers) Partial orders & Positivity 8/27



Dominance
Weak dominance

Containment
Relation

AM–GM inequality
monomial mλ
elementary eλ
power sum pλ
complete hλ
Schur sλ

Having seen

λ ≽ µ ⇐⇒ bλ(x) ⩾ bµ(x), x ∈ [0,∞)n (*)

for the bases (bλ) with bλ(x) = mλ(x)
mλ(1) ,

eλ′ (x)
eλ′ (1) ,

pλ(x)
pλ(1) .

Cuttler–Greene–Skandera asked if this is true for Schur polynomials.

λ ≽ µ ⇐⇒ sλ(x)
sλ(1)

⩾ sµ(x)
sµ(1)

, x ∈ [0,∞)n, (9)

Cuttler–Greene–Skandera proved ⇐= and conjectured =⇒ .
Later, proved by Sra (2016), using Harish-Chandra–Itzykson–Zuber
integral and AM–GM inequality.
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mλ(1) ,

eλ′ (x)
eλ′ (1) ,

pλ(x)
pλ(1) .

Cuttler–Greene–Skandera asked if this is true for Schur polynomials.
• Schur polynomial sλ is defined as

sλ(x) =
det(xλj+n−j

i )

det(xn−j
i )

= det(hλi−i+j) = det(eλ′
i−i+j)

= character of GLn(C)-modules
= Frobenius characteristic of Sd-modules
= spherical function for (GLn(C),Un)

= generating function of semi-standard Young tableaux
= · · ·

λ ≽ µ ⇐⇒ sλ(x)
sλ(1)

⩾ sµ(x)
sµ(1)

, x ∈ [0,∞)n, (9)

Cuttler–Greene–Skandera proved ⇐= and conjectured =⇒ .
Later, proved by Sra (2016), using Harish-Chandra–Itzykson–Zuber
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What if |λ| 6= |µ|?
We say λ weakly dominates µ, denoted by λ ≽w µ
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What if |λ| 6= |µ|?
We say λ weakly dominates µ, denoted by λ ≽w µ if

λ1 ⩾ µ1

λ1 + λ2 ⩾ µ1 + µ2

...
λ1 + · · ·+ λn−1 ⩾ µ1 + · · ·+ µn−1

|λ| = λ1 + · · ·+ λn−1 + λn ⩾ µ1 + · · ·+ µn−1 + µn = |µ|.
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What if |λ| 6= |µ|?
We say λ weakly dominates µ, denoted by λ ≽w µ
Khare and Tao (2021) proved

λ ≽w µ ⇐⇒ sλ(x)
sλ(1)

⩾ sµ(x)
sµ(1)

, x ∈ [1,∞)n
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Take bλ(x) = sλ(x)
sλ(1) , then we have
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on partitions and positivity on symmetric functions? How are these
equivalences related?
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Question: Is there another such equivalence between a partial order
on partitions and positivity on symmetric functions? How are these
equivalences related?
Answer: Yes! This is the motivation of our first paper 2403.02490.
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Containment
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Schur sλ
Jack Pλ(α)
Macdonald Pλ(q, t)
Binomial formulas for Jack polynomials
Jack positivity
Example

The binomial formula for Schur polynomials is

sλ(x + 1)
sλ(1)

=
∑
ν⊆λ

(
λ

ν

)
sν(x)
sν(1)

,

where the expansion coefficients are called generalized binomial
coefficients. They were first studied by Lascoux (1978) to compute
Chern classes for exterior and symmetric squares of vector bundles.
See also [Macdonald, p. 47, Example 10].
• We say λ contains µ, λ ⊇ µ, if λi ⩾ µi for i = 1, . . . , n.

Theorem (Sahi 2011, C.–Sahi 2024)

Positivity If λ ⊇ ν, then
(
λ
ν

)
> 0; and

(
λ
ν

)
= 0 otherwise.

Monotonicity If λ ⊇ µ then
(
λ
ν

)
−
(
µ
ν

)
⩾ 0 for any ν.

Hong Chen (Rutgers) Partial orders & Positivity 12/27



Dominance
Weak dominance

Containment
Relation

Schur sλ
Jack Pλ(α)
Macdonald Pλ(q, t)
Binomial formulas for Jack polynomials
Jack positivity
Example

The binomial formula for Schur polynomials is

sλ(x + 1)
sλ(1)

=
∑
ν⊆λ

(
λ

ν

)
sν(x)
sν(1)

,

where the expansion coefficients are called generalized binomial
coefficients. They were first studied by Lascoux (1978) to compute
Chern classes for exterior and symmetric squares of vector bundles.
See also [Macdonald, p. 47, Example 10].
• We say λ contains µ, λ ⊇ µ, if λi ⩾ µi for i = 1, . . . , n.

Theorem (Sahi 2011, C.–Sahi 2024)

Positivity If λ ⊇ ν, then
(
λ
ν

)
> 0; and

(
λ
ν

)
= 0 otherwise.

Monotonicity If λ ⊇ µ then
(
λ
ν

)
−
(
µ
ν

)
⩾ 0 for any ν.

Hong Chen (Rutgers) Partial orders & Positivity 12/27



Dominance
Weak dominance

Containment
Relation

Schur sλ
Jack Pλ(α)
Macdonald Pλ(q, t)
Binomial formulas for Jack polynomials
Jack positivity
Example

The binomial formula for Schur polynomials is

sλ(x + 1)
sλ(1)

=
∑
ν⊆λ

(
λ

ν

)
sν(x)
sν(1)

,

where the expansion coefficients are called generalized binomial
coefficients. They were first studied by Lascoux (1978) to compute
Chern classes for exterior and symmetric squares of vector bundles.
See also [Macdonald, p. 47, Example 10].
• We say λ contains µ, λ ⊇ µ, if λi ⩾ µi for i = 1, . . . , n.

Theorem (Sahi 2011, C.–Sahi 2024)

Positivity If λ ⊇ ν, then
(
λ
ν

)
> 0; and

(
λ
ν

)
= 0 otherwise.

Monotonicity If λ ⊇ µ then
(
λ
ν

)
−
(
µ
ν

)
⩾ 0 for any ν.

Hong Chen (Rutgers) Partial orders & Positivity 12/27



Dominance
Weak dominance

Containment
Relation

Schur sλ
Jack Pλ(α)
Macdonald Pλ(q, t)
Binomial formulas for Jack polynomials
Jack positivity
Example

The binomial formula gives

sλ(x + 1)
sλ(1)

− sµ(x + 1)
sµ(1)

=
∑
ν

((
λ

ν

)
−
(
µ

ν

))
sν(x)
sν(1)

If λ ⊇ µ, then by the monotonicity,
(
λ
ν

)
−
(
µ
ν

)
⩾ 0 for any ν. Namely,

the difference is Schur positive.
Conversely, if λ 6⊇ µ, then for ν = µ, we have

(
λ
ν

)
= 0 and

(
µ
ν

)
= 1,

and the difference is not Schur positive.

λ ⊇ µ ⇐⇒ sλ(x + 1)
sλ(1)

− sµ(x + 1)
sµ(1)

is Schur positive (11)

λ ⊇ µ ⇐⇒ bλ(x + 1)− bµ(x + 1) is b-positive (***)

Question: Is (***) true for more bases?
Question: How are (*), (**), (***) related?
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Schur sλ
Jack Pλ(α)
Macdonald Pλ(q, t)
Binomial formulas for Jack polynomials
Jack positivity
Example

Jack polynomials Pλ(α) were introduced by Jack in 1970s, as a
unification of Schur polynomials and zonal polynomials (spherical
function for (GLn(R),On)).
They can be defined as follows:

〈Pλ(α),Pµ(α)〉α = 0, λ 6= µ

Pλ(α) =
∑
µ≼λ

Kλµ(α)mµ, Kλλ = 1

They depend on a parameter α:
α = 0, Pλ(α) = eλ′

α = 1, Pλ(α) = sλ
α = 2, Pλ(α) = zonal
α → ∞, Pλ(α) = mλ
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Binomial formulas for Jack polynomials
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Macdonald polynomials Pλ(q, t) were introduced by Macdonald in
1980s.
They can be defined as follows:

〈Pλ(q, t),Pµ(q, t)〉q,t = 0, λ 6= µ

Pλ(q, t) =
∑
µ≼λ

Kλµ(q, t)mµ, Kλλ = 1

They depend on two parameters q, t:
q = t, Pλ(q, t) = sλ
t = 1, Pλ(q, t) = mλ

q = 1, Pλ(q, t) = eλ′

q = 0, Hall–Littlewood; t = 0, q-Whittaker
lim
t→1

Pλ(tα, t) = Pλ(α)
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Macdonald Pλ(q, t)
Binomial formulas for Jack polynomials
Jack positivity
Example

The binomial formula for Schur polynomials was generalized to the
Jack setting in the 1990s, by Kaneko, Knop–Sahi, Lassalle,
Okounkov–Olshanski:

sλ(x + 1)
sλ(1)

=
∑
ν⊆λ

(
λ

ν

)
sν(x)
sν(1)

Pλ(x + 1;α)
Pλ(1;α)

=
∑
ν⊆λ

(
λ

ν

)
α

Pν(x;α)
Pν(1;α)

The binomial coefficients
(
λ
ν

)
α
can be given by evaluation of

interpolation Jack polynomials, which are inhomogeneous
generalizations of Jack polynomials, introduced by Knop and Sahi.
They are rational polynomials in α.
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Macdonald Pλ(q, t)
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Theorem (Sahi 2011, C.–Sahi 2024)

Positivity If λ ⊇ ν, then
(
λ
ν

)
α
> 0; and

(
λ
ν

)
= 0 otherwise.

Monotonicity If λ ⊇ µ then
(
λ
ν

)
α
−
(
µ
ν

)
α
⩾ 0 for any ν.

Here, f(α) ⩾ 0 means for any α ∈ [0,∞], f(α) ⩾ 0.

The binomial formula gives

Pλ(x + 1;α)
Pλ(1;α)

− Pµ(x + 1;α)
Pµ(1;α)

=
∑
ν

((
λ

ν

)
α

−
(
µ

ν

)
α

)
Pν(x;α)
Pν(1;α)

λ ⊇ µ ⇐⇒ Pλ(x + 1;α)
Pλ(1;α)

− Pµ(x + 1;α)
Pµ(1;α)

is Jack positive (12)

Another example of (***):

λ ⊇ µ ⇐⇒ bλ(x + 1)− bµ(x + 1) is b-positive (***)
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Dominance
Weak dominance

Containment
Relation

Schur sλ
Jack Pλ(α)
Macdonald Pλ(q, t)
Binomial formulas for Jack polynomials
Jack positivity
Example

Write Ωλ(x;α) = Pλ(x;α)
Pλ(1;α) and Ω̃λ(x;α) = Ωλ(x + 1;α).

When α = 0, 1,∞, Jack specializes to elementary, Schur, monomial.
Ω and Ω̃ become: E and Ẽ, Sλ and S̃λ, M and M̃.

Ẽ − Ẽ = E + 2E + 2E + 4E + E + 2E

S̃ − S̃ = S + 4
3S + 8

3S + 3S + 2S + 2S

M̃ − M̃ = M + M + 3M + 2M + 3M + 2M

Ω̃ − Ω̃ = Ω + 2α+2
2α+1Ω + 6α+2

2α+1Ω + 2α+4
α+1 Ω + 3α+1

α+1 Ω + 2Ω

1

λ ⊇ µ ⇐⇒ bλ(x + 1)− bµ(x + 1) is b-positive (***)

holds for bλ = Pλ(x;α)
Pλ(1;α) ,

eλ′ (x)
eλ′ (1) ,

sλ(x)
sλ(1) ,

mλ(x)
mλ(1) and zonal.

Surprisingly, also holds for power sum: bλ(x) = pλ(x+1)
pλ(1) . Proof by

induction on length of λ.
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Dominance
Weak dominance

Containment
Relation

Summary
A lemma
(*)+(***) =⇒ (**)
Conjecture
Partial results
Muirhead cone and semiring

λ ≽ µ ⇐⇒ bλ(x) ⩾ bµ(x), x ∈ [0,∞)n (*)

for bλ(x) = eλ′ (x)
eλ′ (1) ,

sλ(x)
sλ(1) ,

mλ(x)
mλ(1) ,

pλ(x)
pλ(1) .

λ ≽w µ ⇐⇒ bλ(x + 1) ⩾ bµ(x + 1), x ∈ [0,∞)n (**)

for bλ(x) = sλ(x)
sλ(1) .

λ ⊇ µ ⇐⇒ bλ(x + 1)− bµ(x + 1) is b-positive (***)

for bλ = Pλ(x;α)
Pλ(1;α) ,

eλ′ (x)
eλ′ (1) ,

sλ(x)
sλ(1) ,

mλ(x)
mλ(1) ,

pλ(x)
pλ(1) and zonal.
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Dominance
Weak dominance

Containment
Relation

Summary
A lemma
(*)+(***) =⇒ (**)
Conjecture
Partial results
Muirhead cone and semiring

⊇ ≽

λ = (5, 5, 3, 2, 1) ⊇ µ = (5, 5, 3, 1) ≽ ν = (5, 4, 4, 1)
Containment = removing boxes
Dominance = lowering boxes
Weak dominance = both
Lemma
If λ ≽w ν, then ∃µ such that

λ ⊇ µ ≽ ν.
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λ ≽w µ ⇐⇒ bλ(x + 1) ⩾ bµ(x + 1), x ∈ [0,∞)n (**)
λ ⊇ µ ⇐⇒ bλ(x + 1)− bµ(x + 1) is b-positive (***)

Theorem
Let bλ(x) be evaluation positive, namely, bλ(x) ⩾ 0, x ∈ [0,∞)n.
Then for the =⇒ direction: (*)+ (***) =⇒ (**).
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λ ≽w µ ⇐⇒ bλ(x + 1) ⩾ bµ(x + 1), x ∈ [0,∞)n (**)
λ ⊇ µ ⇐⇒ bλ(x + 1)− bµ(x + 1) is b-positive (***)

Proof.
Assume λ ≽w ν. By the lemma, ∃µ such that λ ⊇ µ ≽ ν.

bλ(x + 1)− bν(x + 1) =
(
bλ(x + 1)− bµ(x + 1)

)
+
(
bµ(x + 1)− bν(x + 1)

)
By (***), the former bλ(x + 1)− bµ(x + 1) expands positively into
bξ(x), which is evaluation positive.
By (*), the latter bµ(x + 1)− bν(x + 1) is evaluation positive.
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λ ⊇ µ ⇐⇒ bλ(x + 1)− bµ(x + 1) is b-positive (***)

Theorem
Let bλ(x) be evaluation positive, namely, bλ(x) ⩾ 0, x ∈ [0,∞)n.
Then for the =⇒ direction: (*)+ (***) =⇒ (**).

In particular, (**) holds for bλ = eλ′ (x)
eλ′ (1) ,

mλ(x)
mλ(1) ,

pλ(x)
pλ(1) , in addition to

Khare–Tao’s result for sλ(x)
sλ(1) .
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λ ⊇ µ ⇐⇒ bλ(x + 1)− bµ(x + 1) is b-positive (***)

(*) and (**) hold for bλ = eλ′ (x)
eλ′ (1) ,

sλ(x)
sλ(1) ,

mλ(x)
mλ(1) ,

pλ(x)
pλ(1)

(***) holds for these + polynomials Pλ(x;α)
Pλ(1;α)

Conjecture (C.–Sahi 2024)

(*) and (**) hold for bλ = Pλ(x;α)
Pλ(1;α) .

Theorem (C.–Sahi 2024)

For bλ = Pλ(x;α)
Pλ(1;α) , the ⇐= direction in (*) and in (**) is true.

Also, the =⇒ direction in (*) implies the =⇒ direction in (**).

Hong Chen (Rutgers) Partial orders & Positivity 22/27



Dominance
Weak dominance

Containment
Relation

Summary
A lemma
(*)+(***) =⇒ (**)
Conjecture
Partial results
Muirhead cone and semiring

λ ≽ µ ⇐⇒ bλ(x) ⩾ bµ(x), x ∈ [0,∞)n (*)
λ ≽w µ ⇐⇒ bλ(x + 1) ⩾ bµ(x + 1), x ∈ [0,∞)n (**)
λ ⊇ µ ⇐⇒ bλ(x + 1)− bµ(x + 1) is b-positive (***)

(*) and (**) hold for bλ = eλ′ (x)
eλ′ (1) ,

sλ(x)
sλ(1) ,

mλ(x)
mλ(1) ,

pλ(x)
pλ(1)

(***) holds for these + polynomials Pλ(x;α)
Pλ(1;α)

Conjecture (C.–Sahi 2024)

(*) and (**) hold for bλ = Pλ(x;α)
Pλ(1;α) .

Theorem (C.–Sahi 2024)

For bλ = Pλ(x;α)
Pλ(1;α) , the ⇐= direction in (*) and in (**) is true.

Also, the =⇒ direction in (*) implies the =⇒ direction in (**).

Hong Chen (Rutgers) Partial orders & Positivity 22/27



Dominance
Weak dominance

Containment
Relation

Summary
A lemma
(*)+(***) =⇒ (**)
Conjecture
Partial results
Muirhead cone and semiring

λ ≽ µ ⇐⇒ bλ(x) ⩾ bµ(x), x ∈ [0,∞)n (*)
λ ≽w µ ⇐⇒ bλ(x + 1) ⩾ bµ(x + 1), x ∈ [0,∞)n (**)
λ ⊇ µ ⇐⇒ bλ(x + 1)− bµ(x + 1) is b-positive (***)

(*) and (**) hold for bλ = eλ′ (x)
eλ′ (1) ,

sλ(x)
sλ(1) ,

mλ(x)
mλ(1) ,

pλ(x)
pλ(1)

(***) holds for these + polynomials Pλ(x;α)
Pλ(1;α)

Conjecture (C.–Sahi 2024)

(*) and (**) hold for bλ = Pλ(x;α)
Pλ(1;α) .

Theorem (C.–Sahi 2024)

For bλ = Pλ(x;α)
Pλ(1;α) , the ⇐= direction in (*) and in (**) is true.

Also, the =⇒ direction in (*) implies the =⇒ direction in (**).

Hong Chen (Rutgers) Partial orders & Positivity 22/27



Dominance
Weak dominance

Containment
Relation

Summary
A lemma
(*)+(***) =⇒ (**)
Conjecture
Partial results
Muirhead cone and semiring

Theorem (C.–Khare–Sahi 2025)

If λ and µ have at most two parts, then (*) holds for bλ = Pλ(x;α)
Pλ(1;α) .

Sketch of Proof.
All such partitions are in the form λ = (a + b, a). For n = 2, we have

P(a+b,a)(x1, x2;α) = (x1x2)
a · P(b,0)(x1, x2;α).

It suffices to prove for λ = (d, 0) ≽ µ = (d − 1, 1), which is done by
explicit computation. For n > 2, we use the following lemma.

Lemma (C.–Khare–Sahi 2025)
For Jack polynomials, if (*) holds for n variables, then it holds for
n + 1 variables.
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Dominance
Weak dominance

Containment
Relation

Summary
A lemma
(*)+(***) =⇒ (**)
Conjecture
Partial results
Muirhead cone and semiring

Let Mλ(x) = mλ(x)
mλ(1) .

The Muirhead cone MC consists of non-negative combinations of

{Mλ − Mµ |λ ⊇ µ}

and Muirhead semiring MS consists of non-negative combinations
of products of

{Mλ − Mµ |λ ⊇ µ} ∪ {Mλ |λ}

By Muirhead’s inequality, functions in MC and MS are evaluation
positive.
They encode more information than evaluation positive.
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Dominance
Weak dominance

Containment
Relation

Summary
A lemma
(*)+(***) =⇒ (**)
Conjecture
Partial results
Muirhead cone and semiring

Cuttler–Greene–Skandera showed that for λ ≽ µ,
eλ′(x)
eλ(1)

− eµ′(x)
eµ(1)

,
pλ(x)
pλ(1)

− pµ(x)
pµ(1)

∈ MS (13)

Conjecture (C.–Khare–Sahi 2025)

If λ ≽ µ, then Pλ(x;α)
Pλ(1;α) −

Pµ(x;α)
Pµ(1;α) ∈ MS.

Theorem (C.–Khare–Sahi 2025)
For n = 2, we have a stronger result: If λ ≽ µ, then
Pλ(x;α)
Pλ(1;α) −

Pµ(x;α)
Pµ(1;α) ∈ MC.

Note that MS is strictly larger than MC: for n = 2,

2M(3) · (M(3) − M(2,1)) = M(6) − M(5,1) − M(4,2) + M(3,3) /∈ MC

For n > 2, examples show that MC is not enough.
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Conjecture (C.–Sahi 2024)

(*) holds for bλ = Pλ(x;q,t)
Pλ(1;q,t) .

Theorem (C.–Khare–Sahi 2025)

For n = 2, (*) holds for bλ = Pλ(x;q,t)
Pλ(1;q,t) .

Conjecture (C.–Khare–Sahi 2025)

If λ ≽ µ, then Pλ(x;q,t)
Pλ(1;q,t) −

Pµ(x;q,t)
Pµ(1;q,t) ∈ MS.

Theorem (C.–Khare–Sahi 2025)
For n = 2, we have a stronger result: If λ ≽ µ, then
Pλ(x;q,t)
Pλ(1;q,t) −

Pµ(x;q,t)
Pµ(1;q,t) ∈ MC.

Hong Chen (Rutgers) Partial orders & Positivity 26/27



Dominance
Weak dominance

Containment
Relation

Summary
A lemma
(*)+(***) =⇒ (**)
Conjecture
Partial results
Muirhead cone and semiring

Conjecture (C.–Sahi 2024)

(*) holds for bλ = Pλ(x;q,t)
Pλ(1;q,t) .

Theorem (C.–Khare–Sahi 2025)

For n = 2, (*) holds for bλ = Pλ(x;q,t)
Pλ(1;q,t) .

Conjecture (C.–Khare–Sahi 2025)

If λ ≽ µ, then Pλ(x;q,t)
Pλ(1;q,t) −

Pµ(x;q,t)
Pµ(1;q,t) ∈ MS.

Theorem (C.–Khare–Sahi 2025)
For n = 2, we have a stronger result: If λ ≽ µ, then
Pλ(x;q,t)
Pλ(1;q,t) −

Pµ(x;q,t)
Pµ(1;q,t) ∈ MC.
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Thank you!
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