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Hypergeometric functions

The vanilla

Euler (1769) and Gauss (1812) were the first to study the following
differential equation and its series solution:
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Hypergeometric functions

The vanilla

Euler (1769) and Gauss (1812) were the first to study the following
differential equation and its series solution:
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Now known as the Gauss hypergeometric function/series is
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where (a),, = F%‘Z(J;)") a(a+1)---(a+n—1) is the Pochhammer
symbol.
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symbol. Then F(a, b; ¢; z) is the unique solution of Eq. (1) subject to
the condition that F(z) is analytic at z= 0 and F(0) = 1.

where (a) = F%‘Z(J;;”) =a(a+1) - (a+ n—1) is the Pochhammer
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One natural way to generalize F'is to allow more parameters.

Let a = (a1,...,ap) and b= (b1,..., by), then

pFo(a; by 2) = Z (a1), - (ap), 2"
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Hypergeometric functions

More parameters

One natural way to generalize F'is to allow more parameters.
Let a= (a1,...,ap) and b= (b1,..., by), then

n

00 (al)n"' ap n 2

Q: Is there a differential equation that characterizes ,Fg?
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Hypergeometric functions

More parameters

One natural way to generalize F'is to allow more parameters.
Let a= (a1,...,ap) and b= (b1,..., by), then

% (ar), - (ap) 2n

_En—pni

= (b1),, (bq)n nl

Q: Is there a differential equation that characterizes ,Fg?
A Yes, see [A. Erdélyi, Higher Transcendental Functions (the
Bateman Manuscript Project)]

ziﬁ <z§z+bk—1> zﬁ <Z—|—ak) (F) =0,

k=1 k=1
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Hypergeometric functions

Matrix argument

Since the ’50s, Bochner, Herz, Constantine, James and Muirhead,
developed the theory of hypergeometric function with matrix
argument, namely, defined on real symmetric positive-definite n x n
matrices.

Such generalizations are of great importance in multivariate statistics,
random matrix, and even number theory.

Constantine showed that such hypergeometric functions can be
written as a series of Zonal polynomials, which are Zonal spherical
function of the Gelfand pair (GL,(R),0,,)
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Hypergeometric functions

Matrix argument

Since the ’50s, Bochner, Herz, Constantine, James and Muirhead,
developed the theory of hypergeometric function with matrix
argument, namely, defined on real symmetric positive-definite n x n
matrices.

Such generalizations are of great importance in multivariate statistics,
random matrix, and even number theory.

Constantine showed that such hypergeometric functions can be
written as a series of Zonal polynomials, which are Zonal spherical
function of the Gelfand pair (GL,(R),0,,)

A further generalization of this type was introduced independently by
Macdonald (’80s, manuscript) and Koranyi (1991), involving Jack
polynomials.
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Let = (z1,...,%,) and y= (Y1,. .., Yn)-
A partition (of length at most n) is A = (Aq,.
ALz 2 A, 20,

, An) € Z™ such that
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Let = (21,...,2,) and y = (y1,. .., Yn)-
A partition (of length at most n) is A = (A1,...,A,) € Z™ such that
ALz 2 A, 20,
The Schur polynomial sy is defined as
det (:E;\ﬁn_j)

s)\(xl,...,xn)zm. (3)
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Macdonald’s hypergeometric functions

Symmetric polynomials

Let 2= (21,...,2,) and y = (Y1, -, Yn)-
A partition (of length at most n) is A = (A1,...,A,) € Z™ such that
ALZ 2 A, 20,
The Schur polynomial sy is defined as
det (x;\j+"_j )
(T, . my) = ———~F. (3)
det (ac?_])

The Jack polynomial Jy(z; @) is a generalization of Schur polynomials
a =1 and Zonal polynomials o« = 2.
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Macdonald’s hypergeometric functions

The Schur case

Macdonald’s hypergeometric functions, in the Schur case, are

)y (ap), sx()

. bq hASA
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where (a), is a generalization of (a),, and hy is the product of
hook-lengths.
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Macdonald’s hypergeometric functions

The Schur case

Macdonald’s hypergeometric functions, in the Schur case, are

(a1)y -+ (%)A sx(z)
F o bz, = ; 4
oFul D XA: (b1)y- - (bg), Pa @)
_ 5 (@) (%)) ss@)n(9)
pFo(a; b,x,yaa—l)—z)\: (bl)x"(bq)x Basa (1) (5)

where (a), is a generalization of (a)., and hy is the product of
hook-lengths.

hysor =7-5-3-2-6-4-2-1-3-1-1= 30240
715|132
6421
31
1
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Macdonald’s hypergeometric functions

The Schur case

Macdonald’s hypergeometric functions, in the Schur case, are

(@)~ (ap) 51 ()
pTFolabma=1)= E , 4
( D — (b1), - (bg), M @)
a b1 o _ Z (a1)y " (ap), sa(x)sa(y)
PFQ(fafbv y Y - 1) - ~ (bl))\ . (bq)A h)\S)\(].n) ) (5)

where (a), is a generalization of (a)., and hy is the product of
hook-lengths.

hysor =7-5-3-2-6-4-2-1-3-1-1= 230240
715132
61421
311
1
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e Q: Differential operator that characterizes Constantine’s

pFq(a; b z;00 = 2) and , Fy(a; bz, y; « = 2) (Zonal case)?
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Known Results

e Q: Differential operator that characterizes Constantine’s
pFo(a; b0 = 2) and pFy(a; by o, y; o« = 2) (Zonal case)?
A: [Muirhead, ’70] and [Constantine-Muirhead, '72] solved o F;
and degenerate cases.
[Fujikoshi, ’75] solved 3F5 and o Fs.
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Known Results

e Q: Differential operator that characterizes Constantine’s
pFo(a; b0 = 2) and pFy(a; by o, y; o« = 2) (Zonal case)?
A: [Muirhead, ’70] and [Constantine-Muirhead, '72] solved o F;
and degenerate cases.
[Fujikoshi, ’75] solved 3F5 and o Fs.

e Q: What about Macdonald’s ,F,(a; b; ; o) and ,Fy(a; b; 7, y; @)
(Jack case)?
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Known Results

o Q: Differential operator that characterizes Constantine’s
pFo(a; b0 = 2) and pFy(a; by o, y; o« = 2) (Zonal case)?
A: [Muirhead, ’70] and [Constantine-Muirhead, '72] solved o F;
and degenerate cases.
[Fujikoshi, ’75] solved 3F5 and o Fs.

e Q: What about Macdonald’s ,F,(a; b; ; o) and ,Fy(a; b; 7, y; @)
(Jack case)?
Macdonald had some ideas on o F} and degenerate cases.
[Yan, '92] and [Kaneko, "93] solved 2 F(a, b; ¢; ; o).
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Known Results

o Q: Differential operator that characterizes Constantine’s
pFo(a; b0 = 2) and pFy(a; by o, y; o« = 2) (Zonal case)?
A: [Muirhead, ’70] and [Constantine-Muirhead, '72] solved 5 F;
and degenerate cases.
[Fujikoshi, ’75] solved 3F5 and o Fs.

e Q: What about Macdonald’s ,F,(a; b; ; o) and ,Fy(a; b; 7, y; @)
(Jack case)?
Macdonald had some ideas on o F} and degenerate cases.
[Yan, '92] and [Kaneko, "93] solved 2 F(a, b; ¢; ; o).

To the best of our knowledge, there are no further results.
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We find, for arbitrary p and ¢, the following differential operators
e a lowering operator L,
@ a raising operator ,R,

e two eigen-operators ,M and N,
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Our work

We find, for arbitrary p and ¢, the following differential operators
e a lowering operator L,
@ a raising operator ,R,
e two eigen-operators ,M and N,

such that ,Fy(a; b; z, y; @) is the unique solution of

(£ — yRW)(F(a,y)) =0, (6)
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Our work

We find, for arbitrary p and ¢, the following differential operators
e a lowering operator L,
@ a raising operator ,R,
e two eigen-operators ,M and N,

such that ,Fy(a; b; z, y; @) is the unique solution of
(LG — yRW)(Fla, ) = 0, (6)
and ,F,(a; b; z; ) is the unique solution of

(Lq = pM)(F(2)) = 0, (7)
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Our work

We find, for arbitrary p and ¢, the following differential operators
e a lowering operator L,
@ a raising operator ,R,
e two eigen-operators ,M and N,

such that ,Fy(a; b; z, y; @) is the unique solution of
(LG — yRW)(Fla, ) = 0, (6)
and ,F,(a; b; z; ) is the unique solution of
(Lg = pM)(F(z)) =0, (7)
and the unique solution of

(Vg = pR)(F(2)) = 0. (8)
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Our work

We find, for arbitrary p and ¢, the following differential operators
o a lowering operator L,
@ a raising operator ,R,
e two eigen-operators , M and N,

such that ,Fy(g; b; , y; @) is the unique solution of

(£ = yRW)(F(,y)) =0, (6)
and ,F,(a; b; x; ) is the unique solution of
(L = pM)(F(2)) = 0, (7)
and the unique solution of
(Ng = pR)(F(z)) = 0. (8)

For comparison, in the classical case, ,Fy(a; b; 2)
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The lowering operator £, is constructed using the divergence operator
Ey =3, 0; and the Laplace Beltrami operator
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Our work

The lowering operator £, is constructed using the divergence operator
Ey =)",0; and the Laplace-Beltrami operator

The raising operator ,R is constructed using multiplication by
e1 = y_,%; and the Laplace-Beltrami operator [J.
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Our work

The lowering operator £, is constructed using the divergence operator
Ey =)",0; and the Laplace-Beltrami operator

The raising operator ,R is constructed using multiplication by
e1 = y_,%; and the Laplace-Beltrami operator [J.

Two eigen-operators ,M and N are constructed using the

Debiard—Sekiguchi operators, which are commuting differential
operators that act diagonally on Jack polynomials.
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Future

Macdonald also introduced a Macdonald polynomial analogue of the

hypergeometric functions:

(al)x ~(ar)>\ N Ia(z g, 1)
r(I)s a; ba T Qat = tn( ) ’
( DS e (A A
§ : (a1)y - (ar)y oy (@ ¢, D) (Y50, 1)
T(I)S a; b7 z, = tn( — . )
( y) A (b1>)\'”(b5))\ )\JA(Lta '7tn_1;Q7 t)

where (a), = (a; ¢, t), is the (g, t)-Pochhammer symbol.
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Future

Macdonald also introduced a Macdonald polynomial analogue of the
hypergeometric functions:

(a1)y -+ (ar)y paey Ia(z; ¢, 1)

(b1)y -+ (bs) I
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where (a), = (a; ¢, t), is the (g, t)-Pochhammer symbol.
Q: Find ¢-difference operator that characterizes ,®;.
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Future

Macdonald also introduced a Macdonald polynomial analogue of the
hypergeometric functions:

(a1)y -+ (ar)y paey Ia(z; ¢, 1)

(b1)y -+ (bs) I

(a1)y - (ar)y ) Ia(z; ¢, 1) (g ¢ 1)
( ) '(bs))\ j)\J)\(17ta"'7tn_1;Q7 t)’

)

>

where (a), = (a; ¢, t), is the (g, t)-Pochhammer symbol.
Q: Find ¢-difference operator that characterizes ,®;.
A: Work in progress with Siddhartha Sahi.
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Thank you!

I will be on job market this Fall.
email: hc813@math.rutgers.edu
slides: https://sites.math.rutgers.edu/~hc813/
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Macdonald’s hypergeometric functions
The Jack case

In the 1980s, Macdonald introduced a Jack polynomial analogue of
hypergeometric functions:

(al;a))\ (CLP,O()A |>\| JA x, Oé
pFola bz o) = - ) 9
( ) z/\: (brya)y -~ (bq,a)/\ Jx ©)
o (ar; ), - (ap,oz) Y In(z;a) n(y; )
e e D (e Ny (73 R WY R

where z = (z1,...,z,) and y = (y1,. .., Yn)-
The Zonal case (Jack with o = 2) was first introduced in 1960s by
Constantine.
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Macdonald’s hypergeometric functions
The Pochhammer symbol

The Pochhammer symbol (a),, = a(a+1)---(a+ m—1) can be
represented by the tableau

071+ [m=1

For a partition, say, A = 4421, we use the content: 0 2|3
—1]0|1|2
—2|—1
-3

(a), = d*(a+1)*(a+2)%(a+3)(a—1)*(a—2)(a —3—)_
The Pochhammer symbol is defined as

(@,= ] (a+i—19,

(LRHEX

Jack case: use a-content j—1— (i—1)/a.
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