Differential operators for Macdonald's hypergeometric functions

Hong Chen (Rutgers)

May 3, 2025 Southeastern Lie Theory Workshop XV College of Charleston

Slides: https://sites.math.rutgers.edu/~hc813/

The vanilla

Euler (1769) and Gauss (1812) were the first to study the following differential equation and its series solution:

$$z(1-z)\frac{d^2F}{dz^2} + (c - (a+b+1)z)\frac{dF}{dz} - abF = 0.$$
 (1)

DISQUISITIONES GENERALES

CIRCA SERIEM INFINITAM

$$1 + \frac{\alpha \vec{6}}{1 \cdot \gamma} x + \frac{\alpha (\alpha + 1) \vec{6} (\vec{6} + 1)}{1 \cdot 2 \cdot \gamma (\gamma + 1)} x x + \frac{\alpha (\alpha + 1) (\alpha + 2) \vec{6} (\vec{6} + 1) (\vec{6} + 2)}{1 \cdot 2 \cdot 3 \cdot \gamma (\gamma + 1) (\gamma + 2)} x^3 + \text{etc.}$$

PARS PRIOR

AUCTORE

CAROLO FRIDERICO GAUSS

The vanilla

Euler (1769) and Gauss (1812) were the first to study the following differential equation and its series solution:

$$z(1-z)\frac{d^2F}{dz^2} + (c - (a+b+1)z)\frac{dF}{dz} - abF = 0.$$
 (1)

Now known as the Gauss hypergeometric function/series is

$$F(a, b; c; z) = 1 + \frac{ab}{c} \frac{z}{1!} + \frac{a(a+1)b(b+1)}{c(c+1)} \frac{z^2}{2!} + \frac{a(a+1)(a+2)b(b+1)(b+2)}{c(c+1)(c+2)} \frac{z^3}{3!} + \cdots$$

$$= \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \frac{z^n}{n!},$$
(2)

where $(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)} = a(a+1)\cdots(a+n-1)$ is the *Pochhammer symbol*.

The vanilla

Euler (1769) and Gauss (1812) were the first to study the following differential equation and its series solution:

$$z(1-z)\frac{d^2F}{dz^2} + (c - (a+b+1)z)\frac{dF}{dz} - abF = 0.$$
 (1)

Now known as the Gauss hypergeometric function/series is

$$F(a, b; c; z) = 1 + \frac{ab}{c} \frac{z}{1!} + \frac{a(a+1)b(b+1)}{c(c+1)} \frac{z^2}{2!} + \frac{a(a+1)(a+2)b(b+1)(b+2)}{c(c+1)(c+2)} \frac{z^3}{3!} + \cdots$$

$$= \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \frac{z^n}{n!}, \qquad (2)$$

where $(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)} = a(a+1)\cdots(a+n-1)$ is the *Pochhammer* symbol. Then F(a,b;c;z) is the unique solution of Eq. (1) subject to the condition that F(z) is analytic at z=0 and F(0)=1.

More parameters

One natural way to generalize F is to allow more parameters. Let $\underline{a} = (a_1, \dots, a_p)$ and $\underline{b} = (b_1, \dots, b_q)$, then

$${}_{p}F_{q}(\underline{a};\underline{b};z) = \sum_{n=0}^{\infty} \frac{(a_{1})_{n} \cdots (a_{p})_{n}}{(b_{1})_{n} \cdots (b_{q})_{n}} \frac{z^{n}}{n!}.$$

Q: Is there a differential equation that characterizes ${}_{p}F_{q}$? **A**: Yes, see [A. Erdélyi, Higher Transcendental Functions (the Bateman Manuscript Project)]

$$\left(z\frac{\mathrm{d}}{\mathrm{d}z}\prod_{k=1}^{q}\left(z\frac{\mathrm{d}}{\mathrm{d}z}+b_k-1\right)-z\prod_{k=1}^{p}\left(z\frac{\mathrm{d}}{\mathrm{d}z}+a_k\right)\right)(F)=0.$$

More parameters

One natural way to generalize F is to allow more parameters. Let $\underline{a} = (a_1, \dots, a_p)$ and $\underline{b} = (b_1, \dots, b_q)$, then

$${}_{p}F_{q}(\underline{a};\underline{b};z) = \sum_{n=0}^{\infty} \frac{(a_{1})_{n} \cdots (a_{p})_{n}}{(b_{1})_{n} \cdots (b_{q})_{n}} \frac{z^{n}}{n!}.$$

Q: Is there a differential equation that characterizes ${}_{p}F_{q}$?

A: Yes, see [A. Erdélyi, Higher Transcendental Functions (the Bateman Manuscript Project)]

$$\left(z\frac{\mathrm{d}}{\mathrm{d}z}\prod_{k=1}^{q}\left(z\frac{\mathrm{d}}{\mathrm{d}z}+b_k-1\right)-z\prod_{k=1}^{p}\left(z\frac{\mathrm{d}}{\mathrm{d}z}+a_k\right)\right)(F)=0.$$

More parameters

One natural way to generalize F is to allow more parameters. Let $\underline{a} = (a_1, \dots, a_p)$ and $\underline{b} = (b_1, \dots, b_q)$, then

$${}_pF_q(\underline{a};\underline{b};z) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \frac{z^n}{n!}.$$

Q: Is there a differential equation that characterizes ${}_{p}F_{q}$? **A**: Yes, see [A. Erdélyi, Higher Transcendental Functions (the Bateman Manuscript Project)]

$$\left(z\frac{\mathrm{d}}{\mathrm{d}z}\prod_{k=1}^{q}\left(z\frac{\mathrm{d}}{\mathrm{d}z}+b_k-1\right)-z\prod_{k=1}^{p}\left(z\frac{\mathrm{d}}{\mathrm{d}z}+a_k\right)\right)(F)=0,$$

Matrix argument

Since the '50s, Bochner, Herz, Constantine, James and Muirhead, developed the theory of hypergeometric function with matrix argument, namely, defined on real symmetric positive-definite $n \times n$ matrices.

Such generalizations are of great importance in multivariate statistics, random matrix, and even number theory.

Constantine showed that such hypergeometric functions can be written as a series of *Zonal polynomials*, which are Zonal spherical function of the Gelfand pair $(GL_n(\mathbb{R}), O_n)$

A further generalization of this type was introduced independently by Macdonald ('80s, manuscript) and Korányi (1991), involving Jack polynomials.

Matrix argument

Since the '50s, Bochner, Herz, Constantine, James and Muirhead, developed the theory of hypergeometric function with matrix argument, namely, defined on real symmetric positive-definite $n \times n$ matrices.

Such generalizations are of great importance in multivariate statistics, random matrix, and even number theory.

Constantine showed that such hypergeometric functions can be written as a series of *Zonal polynomials*, which are Zonal spherical function of the Gelfand pair $(GL_n(\mathbb{R}), O_n)$

A further generalization of this type was introduced independently by Macdonald ('80s, manuscript) and Korányi (1991), involving Jack polynomials.

 $\\ Symmetric\ polynomials$

Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$. A partition (of length at most n) is $\lambda = (\lambda_1, ..., \lambda_n) \in \mathbb{Z}^n$ such that $\lambda_1 \ge ... \ge \lambda_n \ge 0$.

The Schur polynomial s_{λ} is defined as

$$s_{\lambda}(x_1, \dots, x_n) = \frac{\det\left(x_i^{\lambda_j + n - j}\right)}{\det\left(x_i^{n - j}\right)}.$$
 (3)

The Jack polynomial $J_{\lambda}(x; \alpha)$ is a generalization of Schur polynomials $\alpha = 1$ and Zonal polynomials $\alpha = 2$.

Symmetric polynomials

Let $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$. A partition (of length at most n) is $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n$ such that $\lambda_1 \geqslant \cdots \geqslant \lambda_n \geqslant 0$.

The Schur polynomial s_{λ} is defined as

$$s_{\lambda}(x_1, \dots, x_n) = \frac{\det\left(x_i^{\lambda_j + n - j}\right)}{\det\left(x_i^{n - j}\right)}.$$
 (3)

The Jack polynomial $J_{\lambda}(x;\alpha)$ is a generalization of Schur polynomials $\alpha = 1$ and Zonal polynomials $\alpha = 2$.

Symmetric polynomials

Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$.

A partition (of length at most n) is $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$ such that $\lambda_1 \geqslant \dots \geqslant \lambda_n \geqslant 0$.

The Schur polynomial s_{λ} is defined as

$$s_{\lambda}(x_1, \dots, x_n) = \frac{\det\left(x_i^{\lambda_j + n - j}\right)}{\det\left(x_i^{n - j}\right)}.$$
 (3)

The Jack polynomial $J_{\lambda}(x; \alpha)$ is a generalization of Schur polynomials $\alpha = 1$ and Zonal polynomials $\alpha = 2$.

Symmetric polynomials

Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$.

A partition (of length at most n) is $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$ such that $\lambda_1 \geqslant \dots \geqslant \lambda_n \geqslant 0$.

The Schur polynomial s_{λ} is defined as

$$s_{\lambda}(x_1, \dots, x_n) = \frac{\det\left(x_i^{\lambda_j + n - j}\right)}{\det\left(x_i^{n - j}\right)}.$$
 (3)

The Jack polynomial $J_{\lambda}(x;\alpha)$ is a generalization of Schur polynomials $\alpha = 1$ and Zonal polynomials $\alpha = 2$.

The Schur case

Macdonald's hypergeometric functions, in the Schur case, are

$$_{p}F_{q}(\underline{a};\underline{b};x;\alpha=1) = \sum_{\lambda} \frac{(a_{1})_{\lambda} \cdots (a_{p})_{\lambda}}{(b_{1})_{\lambda} \cdots (b_{q})_{\lambda}} \frac{s_{\lambda}(x)}{h_{\lambda}},$$
 (4)

$$_{p}F_{q}(\underline{a};\underline{b};x,y;\alpha=1) = \sum_{\lambda} \frac{(a_{1})_{\lambda} \cdots (a_{p})_{\lambda}}{(b_{1})_{\lambda} \cdots (b_{q})_{\lambda}} \frac{s_{\lambda}(x)s_{\lambda}(y)}{h_{\lambda}s_{\lambda}(\mathbf{1}_{n})},$$
 (5)

where $(a)_{\lambda}$ is a generalization of $(a)_m$ and h_{λ} is the product of hook-lengths.

The Schur case

Macdonald's hypergeometric functions, in the Schur case, are

$${}_{p}F_{q}(\underline{a};\underline{b};x;\alpha=1) = \sum_{\lambda} \frac{(a_{1})_{\lambda} \cdots (a_{p})_{\lambda}}{(b_{1})_{\lambda} \cdots (b_{q})_{\lambda}} \frac{s_{\lambda}(x)}{h_{\lambda}}, \tag{4}$$

$${}_{p}F_{q}(\underline{a};\underline{b};x,y;\alpha=1) = \sum_{\lambda} \frac{(a_{1})_{\lambda} \cdots (a_{p})_{\lambda}}{(b_{1})_{\lambda} \cdots (b_{q})_{\lambda}} \frac{s_{\lambda}(x)s_{\lambda}(y)}{h_{\lambda}s_{\lambda}(\mathbf{1}_{n})},$$
 (5)

where $(a)_{\lambda}$ is a generalization of $(a)_m$ and h_{λ} is the product of hook-lengths.

$$h_{4421} = 7 \cdot 5 \cdot 3 \cdot 2 \cdot 6 \cdot 4 \cdot 2 \cdot 1 \cdot 3 \cdot 1 \cdot 1 = 30240$$

7	5	3	2
6	4	2	1
3	1		
1			

The Schur case

Macdonald's hypergeometric functions, in the Schur case, are

$$_{p}F_{q}(\underline{a};\underline{b};x;\alpha=1) = \sum_{\lambda} \frac{(a_{1})_{\lambda} \cdots (a_{p})_{\lambda}}{(b_{1})_{\lambda} \cdots (b_{q})_{\lambda}} \frac{s_{\lambda}(x)}{h_{\lambda}},$$
 (4)

$${}_{p}F_{q}(\underline{a};\underline{b};x,y;\alpha=1) = \sum_{\lambda} \frac{(a_{1})_{\lambda} \cdots (a_{p})_{\lambda}}{(b_{1})_{\lambda} \cdots (b_{q})_{\lambda}} \frac{s_{\lambda}(x)s_{\lambda}(y)}{h_{\lambda}s_{\lambda}(\mathbf{1}_{n})},$$
 (5)

where $(a)_{\lambda}$ is a generalization of $(a)_m$ and h_{λ} is the product of hook-lengths.

$$h_{4421} = 7 \cdot 5 \cdot 3 \cdot 2 \cdot 6 \cdot 4 \cdot 2 \cdot 1 \cdot 3 \cdot 1 \cdot 1 = 30240$$

- Q: Differential operator that characterizes Constantine's ${}_{p}F_{q}(\underline{a};\underline{b};x;\alpha=2)$ and ${}_{p}F_{q}(\underline{a};\underline{b};x,y;\alpha=2)$ (Zonal case)? A: [Muirhead, '70] and [Constantine–Muirhead, '72] solved ${}_{2}F_{1}$ and degenerate cases. [Fujikoshi, '75] solved ${}_{3}F_{2}$ and ${}_{2}F_{2}$.
- Q: What about Macdonald's ${}_{p}F_{q}(\underline{a};\underline{b};x;\alpha)$ and ${}_{p}F_{q}(\underline{a};\underline{b};x,y;\alpha)$ (Jack case)?

 Macdonald had some ideas on ${}_{2}F_{1}$ and degenerate cases.

 [Yan, '92] and [Kaneko, '93] solved ${}_{2}F_{1}(a,b;c;x;\alpha)$.

To the best of our knowledge, there are no further results

- **Q**: Differential operator that characterizes Constantine's ${}_{p}F_{q}(\underline{a};\underline{b};x;\alpha=2)$ and ${}_{p}F_{q}(\underline{a};\underline{b};x,y;\alpha=2)$ (Zonal case)? **A**: [Muirhead, '70] and [Constantine–Muirhead, '72] solved ${}_{2}F_{1}$ and degenerate cases. [Fujikoshi, '75] solved ${}_{3}F_{2}$ and ${}_{2}F_{2}$.
- Q: What about Macdonald's ${}_{p}F_{q}(\underline{a};\underline{b};x,\alpha)$ and ${}_{p}F_{q}(\underline{a};\underline{b};x,y;\alpha)$ (Jack case)? Macdonald had some ideas on ${}_{2}F_{1}$ and degenerate cases. [Yan, '92] and [Kaneko, '93] solved ${}_{2}F_{1}(a,b;c;x;\alpha)$.

To the best of our knowledge, there are no further results

- Q: Differential operator that characterizes Constantine's _pF_q(<u>a</u>; <u>b</u>; x; α = 2) and _pF_q(<u>a</u>; <u>b</u>; x, y; α = 2) (Zonal case)?
 A: [Muirhead, '70] and [Constantine–Muirhead, '72] solved ₂F₁ and degenerate cases.
 [Fujikoshi, '75] solved ₃F₂ and ₂F₂.
- **Q**: What about Macdonald's ${}_{p}F_{q}(\underline{a};\underline{b};x;\alpha)$ and ${}_{p}F_{q}(\underline{a};\underline{b};x,y;\alpha)$ (Jack case)?

Macdonald had some ideas on ${}_2F_1$ and degenerate cases. [Yan, '92] and [Kaneko, '93] solved ${}_2F_1(a,b;c;x;\alpha)$.

To the best of our knowledge, there are no further results

- Q: Differential operator that characterizes Constantine's _pF_q(<u>a</u>; <u>b</u>; x; α = 2) and _pF_q(<u>a</u>; <u>b</u>; x, y; α = 2) (Zonal case)?
 A: [Muirhead, '70] and [Constantine–Muirhead, '72] solved ₂F₁ and degenerate cases.
 [Fujikoshi, '75] solved ₃F₂ and ₂F₂.
- **Q**: What about Macdonald's ${}_{p}F_{q}(\underline{a};\underline{b};x;\alpha)$ and ${}_{p}F_{q}(\underline{a};\underline{b};x,y;\alpha)$ (Jack case)? Macdonald had some ideas on ${}_{2}F_{1}$ and degenerate cases. [Yan, '92] and [Kaneko, '93] solved ${}_{2}F_{1}(a,b;c;x;\alpha)$.

To the best of our knowledge, there are no further results.

- Q: Differential operator that characterizes Constantine's _pF_q(<u>a</u>; <u>b</u>; x; α = 2) and _pF_q(<u>a</u>; <u>b</u>; x, y; α = 2) (Zonal case)?
 A: [Muirhead, '70] and [Constantine–Muirhead, '72] solved ₂F₁ and degenerate cases.
 [Fujikoshi, '75] solved ₃F₂ and ₂F₂.
- **Q**: What about Macdonald's ${}_{p}F_{q}(\underline{a};\underline{b};x;\alpha)$ and ${}_{p}F_{q}(\underline{a};\underline{b};x,y;\alpha)$ (Jack case)? Macdonald had some ideas on ${}_{2}F_{1}$ and degenerate cases. [Yan, '92] and [Kaneko, '93] solved ${}_{2}F_{1}(a,b;c;x;\alpha)$.

To the best of our knowledge, there are no further results.

We find, for arbitrary p and q, the following differential operators

- a lowering operator \mathcal{L}_q ,
- a raising operator $_p\mathcal{R}$,
- two eigen-operators $_p\mathcal{M}$ and \mathcal{N}_q ,

such that ${}_{p}F_{q}(\underline{a};\underline{b};x,y;\alpha)$ is the unique solution of

$$(\mathcal{L}_q^{(x)} - {}_p \mathcal{R}^{(y)})(F(x, y)) = 0,$$
 (6)

and $_{p}F_{q}(\underline{a};\underline{b};x;\alpha)$ is the unique solution of

$$\mathcal{L}_q - {}_p \mathcal{M})(F(x)) = 0, \tag{7}$$

$$(\mathcal{N}_q - {}_p \mathcal{R})(F(x)) = 0. \tag{8}$$

We find, for arbitrary p and q, the following differential operators

- a lowering operator \mathcal{L}_q ,
- a raising operator $_p\mathcal{R}$,
- two eigen-operators $_p\mathcal{M}$ and $\mathcal{N}_q,$

such that ${}_pF_q(\underline{a};\underline{b};x,y;\alpha)$ is the unique solution of

$$(\mathcal{L}_q^{(x)} - {}_p \mathcal{R}^{(y)})(F(x, y)) = 0,$$
 (6)

and ${}_{p}F_{q}(\underline{a};\underline{b};x;\alpha)$ is the unique solution of

$$(\mathcal{L}_q - {}_p \mathcal{M})(F(x)) = 0, \tag{7}$$

$$(\mathcal{N}_q - {}_p \mathcal{R})(F(x)) = 0. \tag{8}$$

We find, for arbitrary p and q, the following differential operators

- a lowering operator \mathcal{L}_q ,
- a raising operator ${}_{p}\mathcal{R}$,
- two eigen-operators $_p\mathcal{M}$ and \mathcal{N}_q ,

such that ${}_pF_q(\underline{a};\underline{b};x,y;\alpha)$ is the unique solution of

$$(\mathcal{L}_q^{(x)} - {}_p \mathcal{R}^{(y)})(F(x, y)) = 0,$$
 (6)

and $_{p}F_{q}(\underline{a};\underline{b};x;\alpha)$ is the unique solution of

$$(\mathcal{L}_q - {}_p \mathcal{M})(F(x)) = 0, \tag{7}$$

$$(\mathcal{N}_q - {}_p \mathcal{R})(F(x)) = 0. \tag{8}$$

We find, for arbitrary p and q, the following differential operators

- a lowering operator \mathcal{L}_q ,
- a raising operator ${}_{p}\mathcal{R}$,
- two eigen-operators $_p\mathcal{M}$ and \mathcal{N}_q ,

such that ${}_pF_q(\underline{a};\underline{b};x,y;\alpha)$ is the unique solution of

$$(\mathcal{L}_q^{(x)} - {}_p \mathcal{R}^{(y)})(F(x, y)) = 0,$$
 (6)

and ${}_{p}F_{q}(\underline{a};\underline{b};x;\alpha)$ is the unique solution of

$$(\mathcal{L}_q - {}_p \mathcal{M})(F(x)) = 0, \tag{7}$$

$$(\mathcal{N}_q - {}_p \mathcal{R})(F(x)) = 0. \tag{8}$$

We find, for arbitrary p and q, the following differential operators

- a lowering operator \mathcal{L}_q ,
- a raising operator $_p\mathcal{R}$,
- two eigen-operators $_p\mathcal{M}$ and \mathcal{N}_q ,

such that ${}_{p}F_{q}(\underline{a};\underline{b};x,y;\alpha)$ is the unique solution of

$$(\mathcal{L}_q^{(x)} - {}_p \mathcal{R}^{(y)})(F(x, y)) = 0,$$
 (6)

and ${}_{p}F_{q}(\underline{a};\underline{b};x;\alpha)$ is the unique solution of

$$(\mathcal{L}_q - {}_p \mathcal{M})(F(x)) = 0, \tag{7}$$

and the unique solution of

$$(\mathcal{N}_q - {}_p \mathcal{R})(F(x)) = 0. \tag{8}$$

For comparison, in the classical case, ${}_{p}F_{q}(\underline{a};\underline{b};z)$

$$\left(z\frac{\mathrm{d}}{\mathrm{d}z}\prod_{k=1}^{q}\left(z\frac{\mathrm{d}}{\mathrm{d}z}+b_k-1\right)-z\prod_{k=1}^{p}\left(z\frac{\mathrm{d}}{\mathrm{d}z}+a_k\right)\right)(F)=0.$$

The lowering operator \mathcal{L}_q is constructed using the divergence operator $E_1 = \sum_i \partial_i$ and the Laplace–Beltrami operator

$$\Box = \sum_{i} \frac{1}{2} x_i^2 \partial_i + \frac{1}{\alpha} \sum_{i \neq j} \frac{x_i x_j}{x_i - x_j} \partial_i.$$

The raising operator ${}_{p}\mathcal{R}$ is constructed using multiplication by $e_{1} = \sum_{i} x_{i}$ and the Laplace–Beltrami operator \square .

Two eigen-operators $_p\mathcal{M}$ and \mathcal{N}_q are constructed using the Debiard–Sekiguchi operators, which are commuting differential operators that act diagonally on Jack polynomials.

The lowering operator \mathcal{L}_q is constructed using the divergence operator $E_1 = \sum_i \partial_i$ and the Laplace–Beltrami operator

$$\Box = \sum_{i} \frac{1}{2} x_i^2 \partial_i + \frac{1}{\alpha} \sum_{i \neq j} \frac{x_i x_j}{x_i - x_j} \partial_i.$$

The raising operator ${}_{p}\mathcal{R}$ is constructed using multiplication by $e_1 = \sum_i x_i$ and the Laplace–Beltrami operator \square .

Two eigen-operators $_p\mathcal{M}$ and \mathcal{N}_q are constructed using the Debiard–Sekiguchi operators, which are commuting differential operators that act diagonally on Jack polynomials.

The lowering operator \mathcal{L}_q is constructed using the divergence operator $E_1 = \sum_i \partial_i$ and the Laplace–Beltrami operator

$$\Box = \sum_{i} \frac{1}{2} x_i^2 \partial_i + \frac{1}{\alpha} \sum_{i \neq j} \frac{x_i x_j}{x_i - x_j} \partial_i.$$

The raising operator ${}_{p}\mathcal{R}$ is constructed using multiplication by $e_1 = \sum_i x_i$ and the Laplace–Beltrami operator \square .

Two eigen-operators $_p\mathcal{M}$ and \mathcal{N}_q are constructed using the Debiard–Sekiguchi operators, which are commuting differential operators that act diagonally on Jack polynomials.

Future

Macdonald also introduced a Macdonald polynomial analogue of the hypergeometric functions:

$${}_{r}\Phi_{s}(\underline{a};\underline{b};x;q,t) = \sum_{\lambda} \frac{(a_{1})_{\lambda} \cdots (a_{r})_{\lambda}}{(b_{1})_{\lambda} \cdots (b_{s})_{\lambda}} t^{n(\lambda)} \frac{J_{\lambda}(x;q,t)}{j_{\lambda}},$$

$${}_{r}\Phi_{s}(\underline{a};\underline{b};x,y) = \sum_{\lambda} \frac{(a_{1})_{\lambda} \cdots (a_{r})_{\lambda}}{(b_{1})_{\lambda} \cdots (b_{s})_{\lambda}} t^{n(\lambda)} \frac{J_{\lambda}(x;q,t)J_{\lambda}(y;q,t)}{j_{\lambda}J_{\lambda}(1,t,\ldots,t^{n-1};q,t)},$$

where $(a)_{\lambda} = (a; q, t)_{\lambda}$ is the (q, t)-Pochhammer symbol.

Q: Find q-difference operator that characterizes ${}_{r}\Phi_{s}$.

A: Work in progress with Siddhartha Sahi

Future

Macdonald also introduced a Macdonald polynomial analogue of the hypergeometric functions:

$${}_{r}\Phi_{s}(\underline{a};\underline{b};x;q,t) = \sum_{\lambda} \frac{(a_{1})_{\lambda} \cdots (a_{r})_{\lambda}}{(b_{1})_{\lambda} \cdots (b_{s})_{\lambda}} t^{n(\lambda)} \frac{J_{\lambda}(x;q,t)}{j_{\lambda}},$$

$${}_{r}\Phi_{s}(\underline{a};\underline{b};x,y) = \sum_{\lambda} \frac{(a_{1})_{\lambda} \cdots (a_{r})_{\lambda}}{(b_{1})_{\lambda} \cdots (b_{s})_{\lambda}} t^{n(\lambda)} \frac{J_{\lambda}(x;q,t)J_{\lambda}(y;q,t)}{j_{\lambda}J_{\lambda}(1,t,\ldots,t^{n-1};q,t)},$$

where $(a)_{\lambda} = (a; q, t)_{\lambda}$ is the (q, t)-Pochhammer symbol.

Q: Find q-difference operator that characterizes $_r\Phi_s$.

A: Work in progress with Siddhartha Sahi.

Future

Macdonald also introduced a Macdonald polynomial analogue of the hypergeometric functions:

$${}_{r}\Phi_{s}(\underline{a};\underline{b};x;q,t) = \sum_{\lambda} \frac{(a_{1})_{\lambda} \cdots (a_{r})_{\lambda}}{(b_{1})_{\lambda} \cdots (b_{s})_{\lambda}} t^{n(\lambda)} \frac{J_{\lambda}(x;q,t)}{j_{\lambda}},$$

$${}_{r}\Phi_{s}(\underline{a};\underline{b};x,y) = \sum_{\lambda} \frac{(a_{1})_{\lambda} \cdots (a_{r})_{\lambda}}{(b_{1})_{\lambda} \cdots (b_{s})_{\lambda}} t^{n(\lambda)} \frac{J_{\lambda}(x;q,t)J_{\lambda}(y;q,t)}{j_{\lambda}J_{\lambda}(1,t,\ldots,t^{n-1};q,t)},$$

where $(a)_{\lambda} = (a; q, t)_{\lambda}$ is the (q, t)-Pochhammer symbol.

Q: Find q-difference operator that characterizes $_r\Phi_s$.

A: Work in progress with Siddhartha Sahi.

Thank you!

I will be on job market this Fall.

email: hc813@math.rutgers.edu

slides: https://sites.math.rutgers.edu/~hc813/

The Jack case

In the 1980s, Macdonald introduced a Jack polynomial analogue of hypergeometric functions:

$${}_{p}F_{q}(\underline{a};\underline{b};x;\alpha) = \sum_{\lambda} \frac{(a_{1};\alpha)_{\lambda} \cdots (a_{p};\alpha)_{\lambda}}{(b_{1};\alpha)_{\lambda} \cdots (b_{q};\alpha)_{\lambda}} \alpha^{|\lambda|} \frac{J_{\lambda}(x;\alpha)}{j_{\lambda}}, \tag{9}$$

$${}_{p}F_{q}(\underline{a};\underline{b};x,y;\alpha) = \sum_{\lambda} \frac{(a_{1};\alpha)_{\lambda} \cdots (a_{p};\alpha)_{\lambda}}{(b_{1};\alpha)_{\lambda} \cdots (b_{q};\alpha)_{\lambda}} \alpha^{|\lambda|} \frac{J_{\lambda}(x;\alpha)J_{\lambda}(y;\alpha)}{j_{\lambda}J_{\lambda}(\mathbf{1}_{n})}, \quad (10)$$

where $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$.

The Zonal case (Jack with $\alpha=2$) was first introduced in 1960s by Constantine.

The Pochhammer symbol

The Pochhammer symbol $(a)_m = a(a+1)\cdots(a+m-1)$ can be represented by the tableau

$$0 \quad 1 \quad \cdots \quad m-1$$

For a partition, say, $\lambda = 4421$, we use the content:

$$\begin{array}{c|cccc}
0 & 1 & 2 & 3 \\
-1 & 0 & 1 & 2 \\
\hline
-2 & -1 & & & \\
\hline
-3 & & & & & \\
\end{array}$$

$$(a)_{\lambda} = a^2(a+1)^2(a+2)^2(a+3)(a-1)^2(a-2)(a-3).$$

The *Pochhammer symbol* is defined as

$$(a)_{\lambda} = \prod_{(i,j)\in\lambda} (a+j-i),$$

Jack case: use α -content $j-1-(i-1)/\alpha$.