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What are interpolation polynomials?
They are symmetric polynomials and generalizations of the ordinary
Schur/Jack/Macdonald polynomials: they are inhomogeneous, whose
top degree terms correspond to the ordinary polynomials.
They interpolate the Kronecker delta function (up to certain rank).
They are developed by Knop–Sahi (type A) and Okounkov (type BC),
also called shifted polynomials by Okounkov.

Today I will introduce these polynomials and the so-called generalized
binomial coefficients and Littlewood–Richardson coefficients associated
to them. I will also talk about some of our recent results, including
two weighted sum formulas, positivity and monotonicity, and an
application to Jack positivity.

The slides of my talk can be found on
https://sites.math.rutgers.edu/~hc813/.
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Partitions

A partition λ is a finite or infinite sequence λ = (λ1, λ2, . . . , λn, . . . )
of non-negative integers in weakly decreasing order:

λ1 ⩾ λ2 ⩾ · · · ⩾ λn ⩾ · · ·

with only finitely many non-zero terms.
The non-zero λi are called parts; the number of parts is called the
length of λ, denoted by ℓ(λ); the sum of the parts is called the
weight or size of λ, denoted by |λ| = λ1 + λ2 + · · · .
Some reasons that partitions are important:

Conjugacy classes of the symmetric group Sn are indexed by
partitions;
Many(any) natural bases of the ring of symmetric polynomials
are indexed by partitions.
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Symmetric Polynomials
Fix n ⩾ 1, the number of variables, and let Pn be the set of partitions
of length at most n. Let Λ = Z[x1, . . . , xn]

Sn and ΛF = Λ⊗Z F. In the
following, F will be Q, Q(α), or Q(q, t), where α, q, t are
indeterminates.
The monomial basis: mλ =

∑
α∼λ xα, naturally a Z-basis of Λ.

The power sum basis: pr =
∑

i xr
i , and pλ = pλ1 · · · pλℓ

. {pλ} is not a
Z-basis of Λ, for example, m11 + m2 = 1

2 (p11 + p2), but a Q-basis of
ΛQ.
The Schur basis sλ. There are many ways to define them:

sλ =
det(xλj+n−j

i )

det(xn−j
i )

= det(hλi−i+j) =
∑

T

∏
s∈λ

xT(s). (1)

The last one yields the so-called Kostka number Kλµ,

sλ =
∑
µ⩽λ

Kλµmµ. (2)

which can be combinatorially interpreted as the number of
semi-standard tableaux of shape λ and weight µ.
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Orthogonal Polynomials
Schur polynomials can even be defined abstractly. Define an inner
product ⟨·, ·⟩ on Λ by the following:

⟨pλ, pµ⟩ = δλµzλ, (3)

where zλ is some number. Then sλ is the unique polynomial satisfying:

sλ = mλ +
∑
µ<λ

Kλµmµ, ⟨sλ, sµ⟩ = δλµ. (4)

More generally, one can define two other inner products:

⟨pλ, pµ⟩α = δλµzλαℓ(λ), ⟨pλ, pµ⟩q,t = δλµzλ
∏

i

1 − qλi

1 − tλi
, (5)

Then there is a unique P(α)
λ (x) in ΛQ(α) and a unique Pλ(x; q, t) in

ΛQ(q,t), called Jack and Macdonald polynomials, satisfying

Pλ = mλ +
∑
µ<λ

uλµmµ, ⟨Pλ,Pµ⟩ = 0, λ ̸= µ. (6)

When α = 1 or q = t, Pλ becomes sλ.
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Interpolation Polynomials

There are four families of interpolation Jack and Macdonald
polynomials, developed by Knop–Sahi (type A) and Okounkov (type
BC). Denote by AJ,AM the type A interpolation polynomials and
similarly BJ,BM for type BC. They can uniformly defined as follows:

Definition (Interpolation Polynomials)
The unital interpolation polynomial is the unique W-symmetric
function that satisfies the following interpolation condition and degree
condition:

hµ(λ) = δλµ, ∀λ ∈ Pn, |λ| ⩽ |µ|, (7)

deg hµ =

{
|µ|, AJ,AM,BM;

2|µ|, BJ,
(8)

where, λ is some shifting of λ, depending on the family.
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Combinatorial Formulas
Okounkov showed that they admit the following combinatorial
formulas: (The Jack parameter τ corresponds to Macdonald’s 1/α)

Pmonic,J
λ (x; τ) =

∑
T
ψT(τ)

∏
s∈λ

xT(s),

hmonic,AJ
λ (x; τ) =

∑
T
ψT(τ)

∏
s∈λ

(
xT(s) −

(
a′
λ(s) + (n − T(s) − l′λ(s))τ

))
,

hmonic,BJ
λ (x; τ, α) =

∑
T
ψT(τ)

∏
s∈λ

(
x2

T(s) −
(

a′
λ(s) + (n − T(s) − l′λ(s))τ + α

)2
)
,

Pmonic,M
λ (x; q, t) =

∑
T
ψT(q, t)

∏
s∈λ

xT(s),

hmonic,AM
λ (x; q, t) =

∑
T
ψT(q, t)

∏
s∈λ

(
xT(s) − qa′λ(s)tn−T(s)−l′λ(s)

)
,

hmonic,BM
λ (x; q, t, a) =

∑
T
ψT(q, t)

∏
s∈λ

(
xT(s) + x−1

T(s)

− qa′λ(s)tn−T(s)−l′λ(s)a −
(

qa′λ(s)tn−T(s)−l′λ(s)a
)−1

)

where all the sums are over column-strict reverse tableaux T : λ → [n], i.e., weakly
decreasing along the rows and strictly decreasing along the columns.
λ = λ+ τδ, λ+ τδ + α, qλtδ, aqλtδ for AJ,BJ,AM,BM, where δ = (n − 1, . . . , 1, 0).
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Examples
Let n = 2, µ = (3, 2), one can find sµ = PJ

µ = PM
µ = mµ = x3

1x2
2 + x2

1x3
2,

hmonic,AJ
µ = x2x1(x2 − 1)(x1 − 1)(x1 − 2 − τ)

+x2x1(x2 − 1)(x1 − 1)(x2 − 2)
= x1x2(x1 − 1)(x2 − 1)(x1 + x2 − τ − 4)

hmonic,AM
µ = (x2 − 1)(x1 − 1)(x2 − q)(x1 − q)(x1 − q2t)

+(x2 − 1)(x1 − 1)(x2 − q)(x1 − q)(x2 − q2)

= (x1 − 1)(x2 − 1)(x1 − q)(x2 − q)(x1 + x2 − q2t − q2)

The defining condition involves the following 12 partitions:

(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (2, 2), (3, 1), (4, 0), (3, 2), (4, 1), (5, 0).

Note that (λ1, λ2) = (λ1 + τ, λ2), (qλ1 t, qλ2). Because of the
factorizations, one can easily see that hµ vanishes at all but (3, 2).
Moreover, hµ also vanishes at (m, 0) and (m − 1, 1) ∀m ⩾ 6.
Warning: In most cases, no complete factorization!
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Extra Vanishing Property and Binomial Coefficients
In general, it is a surprising fact that the interpolation polynomials
vanish at more points than required in the definition.

Proposition (Knop–Sahi, Okounkov ’90s, Extra Vanishing Property)

hµ(λ) = 0, unless λ ⊇ µ.

Write λ ⊇ µ if λi ⩾ µi, 1 ⩽ i ⩽ n.

Definition ((Adjacent) Binomial Coefficients)

bλµ =

(
λ

µ

)
= hµ(λ), aλµ :=

{
bλµ, λ :⊃µ;

0, otherwise,

Write λ :⊃µ if λ ⊇ µ and |λ| = |µ|+ 1.
Binomial coefficients appear in Okounkov–Olshanski’s binomial
formula.
Some combinatorial formulas for adjacent binomial coefficients are
given in [C-Sahi, Prop 4.3].

24



Extra Vanishing Property and Binomial Coefficients
In general, it is a surprising fact that the interpolation polynomials
vanish at more points than required in the definition.

Proposition (Knop–Sahi, Okounkov ’90s, Extra Vanishing Property)

hµ(λ) = 0, unless λ ⊇ µ.

Write λ ⊇ µ if λi ⩾ µi, 1 ⩽ i ⩽ n.

Definition ((Adjacent) Binomial Coefficients)

bλµ =

(
λ

µ

)
= hµ(λ), aλµ :=

{
bλµ, λ :⊃µ;

0, otherwise,

Write λ :⊃µ if λ ⊇ µ and |λ| = |µ|+ 1.
Binomial coefficients appear in Okounkov–Olshanski’s binomial
formula.
Some combinatorial formulas for adjacent binomial coefficients are
given in [C-Sahi, Prop 4.3].

25



Some Known Results
A Pieri Rule

Temporarily, consider the family AJ and AM only.

Lemma (Sahi ’11, Pieri Rule)
Let ε1 = (1, 0n−1) = (1, 0, . . . , 0) and µ ∈ Pn. Then(

hε1(x)− hε1(µ)
)
· hµ(x) =

∑
ν :⊃µ

(
hε1(ν)− hε1(µ)

)
aνµhν(x). (9)

Proof.
Compare the two sides at λ for |λ| ⩽ |µ|+ 1.
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Some Known Results
Recursion

Let
∥∥∥λ∥∥∥ = bλε1 = hε1(λ). Write A =

(
aλµ

)
,B =

(
bλµ

)
,Z =

(
∥µ∥ δλµ

)
.

Theorem (Sahi ’11, Recursion Formula)
1 The following recursions characterize bλµ:

(i) bλλ = 1; (ii)
(∥∥∥λ∥∥∥−∥µ∥

)
bλµ =

∑
ν :⊃µ

bλν
(
∥ν∥ −∥µ∥

)
aνµ. (10)

2 The matrices A,B,Z satisfy the commutation relations:

(i) [Z,B] = B[Z,A], (ii) [Z,B−1] = −[Z,A]B−1. (11)

Proof.
Evaluate the Pieri rule at λ.
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Some Known Results
Weighted Sum Formula

Theorem (Sahi ’11, Weighted Sum Formula for bλµ)
Let λ ⊇ µ, and k := |λ| − |µ|.

bλµ =
∑

ζ∈Cλµ

wt(ζ)

k−1∏
i=0

aζiζi+1 , (12)

wt(ζ) :=

k−1∏
i=0

∥∥∥ζi

∥∥∥−
∥∥∥ζi+1

∥∥∥∥∥∥ζ0

∥∥∥−
∥∥∥ζi+1

∥∥∥ . (13)

where the sum is over all the chains ζ = (ζ0, . . . , ζk) with

λ = ζ0 :⊃ ζ1 :⊃ · · · :⊃ ζk−1 :⊃ ζk = µ,

(i.e., standard tableaux of skew shape λ/µ).
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Main Results: Binomial Coefficients

Theorem (C–Sahi, Lemma 3.1, Theorem 3.2, Theorem A)
The aforementioned Pieri rule, recursion formula, and weighted sum
formula hold for BJ, BM as well.

For each family, we define a cone of positivity F+ in the base field
F. For example:
For AJ, F = Q(τ) and F+ :=

{
f
g

∣∣∣ f, g ∈ N[τ ] \ 0
}

. In particular, for
f ∈ F+, f(τ) > 0, when τ > 0.
For AM, F = Q(q, t) and F+ consists of functions f(q, t) > 0 when
0 < q, t < 1.

Theorem (C–Sahi, Theorem B, Positivity)
The binomial coefficients bλµ ∈ F+ if and only if λ ⊇ µ.

Theorem (C–Sahi, Theorem C, Monotonicity)
The binomial coefficients bλν − bµν ∈ F+ if λ ⊋ µ ⊇ ν ̸= 0.
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An Application

Theorem (Okounkov–Olshanski ’97, Binomial Formula)
Let Pλ be the Jack polynomial, and bλµ be the binomial coefficients for
the family AJ. Write 1 = (1n) = (1, . . . , 1). Then

Pλ(x + 1)
Pλ(1)

=
∑
ν⊆λ

bλν
Pν(x)
Pν(1)

. (14)

Theorem (C–Sahi, Theorem F)
TFAE:

1 λ contains µ;

2
sλ(x + 1)

sλ(1)
− sµ(x + 1)

sµ(1)
is Schur positive;

3
Pλ(x + 1)

Pλ(1)
− Pµ(x + 1)

Pµ(1)
is Jack positive.
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Related Results

Recall that we say λ weakly majorizes (weakly dominates) µ if∑r
i=1 λi ⩾

∑r
i=1 µi, for all 1 ⩽ r ⩽ n; λ majorizes (dominates) µ if,

in addition, |λ| = |µ|.

Theorem (Cuttler–Greene–Skandera ’11, Sra ’16)
Let |λ| = |µ|. Then λ majorizes µ if and only if

sλ(x)
sλ(1)

− sµ(x)
sµ(1)

⩾ 0, ∀x ∈ [0,∞)n. (15)

Theorem (Khare–Tao ’18)
λ weakly majorizes µ if and only if

sλ(x + 1)
sλ(1)

− sµ(x + 1)
sµ(1)

⩾ 0, ∀x ∈ [0,∞)n. (16)
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Generalization

Conjecture
Let Pλ be the Jack polynomial and F+

R = { f/g | f, g ∈ R⩾0[τ ] \ 0 }.
(CGS Conjecture for Jack polynomials) Suppose |λ| = |µ|. λ
majorizes µ if and only if

Pλ(x)
Pλ(1)

− Pµ(x)
Pµ(1)

∈ F+
R ∪ 0, ∀x ∈ [0,∞)n. (17)

(KT Conjecture for Jack polynomials) λ weakly majorizes µ if
and only if

Pλ(x + 1)
Pλ(1)

− Pµ(x + 1)
Pµ(1)

∈ F+
R ∪ 0, ∀x ∈ [0,∞)n. (18)

35



Littlewood–Richardson Coefficients

Definition (Littlewood–Richardson Coefficients)
The Littlewood–Richardson coefficients are defined by the
product expansion

hµ(x)hν(x) =
∑
λ

cλµνhλ(x).

Because the top degree terms of the interpolation polynomials are
related to be ordinary ones, these cλµν generalize the usual LR
coefficients for Jack/Macdonald polynomials.
They are good for induction or recursion purpose [Sahi ’11], as
interpolation polynomials are inhomogeneous.
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Main Results: LR Coefficients

Theorem (C–Sahi, Theorem D, Weighted Sum Formula for cλµν)

cλµν =
∑

ζ∈Cλµ

wtLR
ν (ζ)

k−1∏
i=0

aζiζi+1 , (19)

wtLR
ν (ζ) :=

k∑
j=0

∏
0⩽i⩽k−1

(∥∥∥ζi

∥∥∥−
∥∥∥ζi+1

∥∥∥)
∏

0⩽i⩽k
i̸=j

(∥∥∥ζj

∥∥∥−
∥∥∥ζi

∥∥∥) bζjν . (20)

A special case: when λ = ν, cλµλ = bλµ, and the weighted sum formula
for LR coefficients degenerates to that for binomial coefficients.
Another special case: when λ :⊃µ, cλµν = aλµ(bλν − bµν).

Theorem (C–Sahi, Theorem E)
Assume λ :⊃µ, then the adjacent LR coefficient cλµν lies in the
cone of positive F+ if λ ⊇ ν ̸= 0 and is 0 otherwise.
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