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Binomial formula: the classical case

We have the classical Newton’s binomial theorem.

For non-negative integers m,n, and a variable z,

(e+1)"=Y <:l> ™.

m

In fact, n could be any real number, and z is a real number in a
neighborhood of 0.
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Binomial formula: the classical case

We have the classical Newton’s binomial theorem.

For non-negative integers m,n, and a variable z,

+1)" =) <:l) 7™,

m

In fact, n could be any real number, and z is a real number in a
neighborhood of 0.

How to generalize this to symmetric polynomials?
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Fix n > 1, the number of variables.

A partition is a sequence A = (A1,...,\,) € Z™, such that
M2z 2220

Denote by P, the set of such partitions. The length £()\) is the
number of non-zero parts, and the size is |A| = )" A;.
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Partitions and symmetric polynomials

Fix n > 1, the number of variables.
A partition is a sequence A = (A1,...,A,) € Z™, such that

M=z 22,20
Denote by P, the set of such partitions. The length ¢(\) is the
number of non-zero parts, and the size is |A| = > A;.

Many (any) interesting bases of the ring of symmetric polynomials are
indexed by partitions, to name a few, the monomial my =" _, 2%,
the power-sum p>\ = p)\l - Da,, and the elementary ey = ey, - ey,

where p, = =D Ty € = Mary = Dy ooy Tiy o Ty
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The most important basis is perhaps Schur polynomials sy
) det ( )\ i+n— ])

— = det(ex—;
det (2} ) (ex—st)

=2 I[#ne-

T seEX
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The most important basis is perhaps Schur polynomials sy
det ( )\ i+n— ])
S\ =

—— = = det( e,\/_zﬂ Z7(s)-
7 =2

e For combinatorics, Schur polynomials are generating functions of
Young tableaux.

«0O0>» «F»>» «E>» «E>» Q>
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Schur polynomials

The most important basis is perhaps Schur polynomials s).
Ait+n—j
det(z}’ )

sy = ————= =det(ex_s15) = Tr(s)-

det(7) ( / i+5) ; se]:[\ (s)

e For combinatorics, Schur polynomials are generating functions of
Young tableaux.

e For rep theory, Schur polynomials correspond bijectively to all
irreducible characters of the symmetric groups.
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Schur polynomials

The most important basis is perhaps Schur polynomials s).

Aj+n—j
det (2]
S\ = 6(7_) = det(ek’—i+] Z H T1(s)-

det(z;") T sex

e For combinatorics, Schur polynomials are generating functions of
Young tableaux.

e For rep theory, Schur polynomials correspond bijectively to all
irreducible characters of the symmetric groups.

Schur polynomials can also be defined abstractly. Define an inner

product (-,-) on A, the ring of symmetric polynomials in n variables,

by the following:
<p>\7p,u> = 5)\,uz)\a

where z) is some integer. Then sy is the unique polynomial satisfying:

S\ = my + E KMmH, <3/\75M> = 5>\M'
<A
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Jack and Macdonald polynomials

One can define inner products on A, ® Q(7) and A, ® Q(g, 1):
—6(N) 1— g~
<p)\a p[l.>‘l’ = 6>\,uz/\7_ s <p)\v pu>q,t = 5)\;1.2)\ ];[ 1_719\1

Then there is a unique Py(z;7) in A, ® Q(«) and a unique Py (z; g, t)
in A, ® Q(g, t), called Jack and Macdonald polynomials, satisfying

P,\ZT)’L,\-FZU)\M’ITLM, <P,\,PM>=O, )\?éu.
pn<A
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Jack and Macdonald polynomials

One can define inner products on A, ® Q(7) and A, ® Q(g, 1):
—6(N) 1— g~
<p)\a p[l.>‘l’ = 6>\,uz/\7_ s <p)\v pu>q,t = 5)\;1.2)\ ];[ 1_719\1

Then there is a unique Py(z;7) in A, ® Q(«) and a unique Py (z; g, t)
in A, ® Q(g, t), called Jack and Macdonald polynomials, satisfying

P,\:m,\—FZu,\MmM, <P,\,PM>=0, A .
pn<A

Jack and Macdonald polynomials are generalizations of Schur and
many other polynomials:
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Jack and Macdonald polynomials

One can define inner products on A, ® Q(7) and A, ® Q(g, 1):
—6(N) 1— g~
<p)\a p[l.>‘l’ = 6>\,uz/\7_ s <p)\v pu>q,t = 5)\;1.2)\ ];[ 1_719\1

Then there is a unique Py(z;7) in A, ® Q(«) and a unique Py (z; g, t)
in A, ® Q(g, t), called Jack and Macdonald polynomials, satisfying

Py=mx+ Y unumu, (Pr,Pu) =0, A% p.
pn<A

Jack and Macdonald polynomials are generalizations of Schur and
many other polynomials:

7=1or ¢=t Schur;

7 =0 or t=1: monomial;

T =00 or ¢ = 1: transposed elementary;

T= %, 2: Zonal; ¢ = 0: Hall-Littlewood; t = 0: ¢-Whittaker.
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Interpolation polynomials

Properties of binomial coefficients
An application

Let x = (=,

..,zp) and 1 =(1") = (1,...,1). Okounkov and
Olshanski (’97) prove the following for Jack polynomials:

@+1)r =Y (")xm

m
Pyx(z+1;7)

Pr(1;7) z“: (2)7%

[m] = -

DA
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Let x = (z1,...,%,) and 1 = (1) = (1,...,1). Okounkov and
Olshanski (’97) prove the following for Jack polynomials:

(a+1)" = (Z) 2"

m

Pyx(z+1;7) AN\ Pu(zT)
Py(L;7) %: <#>TPM(1;T)

<n> wz—1) (z—m+1)

m m/

().

These hy, are called interpolation Jack polynomials [Sahi 94,
Knop-Sahi ’96], also called shifted Jack polynomials by Okounkov.

r=n

hy, (z;7)
=\
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Definition

The unital interpolation polynomial, denoted by h,,, is the unique
symmetric function that satisfies the following interpolation condition
and degree condition:

hu(X) = 6xp, VA€ Pr, |A| < il (1)
deg hy, = |ul, (2)

where \; = \; + (n — i)7 in the Jack case, and \; = ¢*¢"~" in the

Macdonald case.
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Definition
The unital interpolation polynomial, denoted by h,,, is the unique

symmetric function that satisfies the following interpolation condition
and degree condition:

hu(X) = Oau, YA€ Py, A < ul, (1)
deg hy, = |ul, (2)

where \; = \; + (n — i)7 in the Jack case, and \; = ¢*¢"~" in the
Macdonald case.

This normalization is called unital as (Z) =h, (@) =1.

There are other normalizations: monic, whose top degree part is the
monic Jack/Macdonald P,; integral, whose top degree part is the
integral Jack/Macdonald J,.
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Definition
The unital interpolation polynomial, denoted by h,,, is the unique

symmetric function that satisfies the following interpolation condition
and degree condition:

hu(X) = xu, YA€ Pa, [N < ul, (1)
deg by, = |ul, (2)

where \; = \; + (n — i)7 in the Jack case, and \; = ¢*¢"~" in the
Macdonald case.

This normalization is called unital as (Z) =h, (@) =1.

There are other normalizations: monic, whose top degree part is the
monic Jack/Macdonald P,; integral, whose top degree part is the
integral Jack/Macdonald J,.

The above is type A interpolation polynomials, introduced by
Knop-Sahi in the ’90s. Okounkov also introduced type BC
interpolation polynomials, defined by setting A\; = \; + (n — i)7 + «
and agM" "
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Okounkov—Olshanski proved the following combinatorial formulas:

PRoved (g 7) = Z¢T(T 11 z7o)- (3)

sEX
mme M g = S wa(n) [T (2r0 = (0 + (0= T = h6)7) ). @)
T SEX
hi\uonic,BJ(m; T,a) = ZwT(T) H (x?[(a) - (ag\(s) + (n— T(s) — I\ ()T + 04)2) ,
T SEX
(5)
PROMOM (g g, 1) = Z (g, t) [ | o1 (6)
SEX
h;noru(, AM(L ot = leu(% ) H (IT(s) _ qa)\(S) tn—T(S)fl (S)> (7)
sEX

RYOMOPM (43 g, ¢, a) = Z Yr(g,t) H (IT(s) + UGT( ) (8)

SEX

a (s) n—T(s) =1, (s) o (s) n—T(s) =1, (s) -t
g2 ¢ A g — (g2 (¢ O

where all the sums are over column-strict reverse tableaux T : A — [n], i.e., weakly

decreasing along the rows and strictly decreasing along the columns.
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Interpolation polynomials
Properties of binomial coefficients
An application

Let n=2, u=

(3,2), one can find s, = P, = Pl = m,, = 213 + 1343,
By e AV — (g — 1) (21 — 1)(2 — 2 — 1)
+ZB2$1($2 — 1)(.%1 — 1)(11}2 — 2)
=nn(n —1)(—1)(t+n—7-—4)
RN — (5 — 1) (@ — 1)(22 — @) (21 — g)(
+(zz = D)z — 1) (22
= (1 —1)(z2 —

— )
— @)(m — g)( avz—q2
D(z — q)(z2 — ¢)(z1 + 22 — ¢t — &)

s} = =
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Let n =2, u = (3,2), one can find s, = P, = P\' = m, = 23 + 2743,

PoioA) = pay (3 — 1) (w1 — 1)(21 — 2 — 7)
+$2:E1($2 — 1)(I1 — 1)(372 — 2)
=nn(n —1)(—1)(t+n—7-—4)

RpomeAM = (3 — 1)(z1 — 1)(22 — @) (11 — @)(z1 — 1)
(12 — 1) (21 — )22 — @)(11 — )22 — ¢)
= (21— 1)(22 — 1)(m1 — @) (22 — ¢)(21 + 22 — q2t— fI2

The defining condition involves the following 12 partitions:

(0,0),(1,0),(1,1),(2,0),(2,1),(3,0),(2,2),(3,1),(4,0), (3,2), (4,1), (5,0).

Note that (A1, A2) = (A1 + 7, \2), (¢*1 £, ¢*2). Because of the
factorizations, one can easily see that h, vanishes at all but (3,2).
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Let n =2, u = (3,2), one can find s, = P, = P\' = m, = 23 + 2743,
PoioA) = pay (3 — 1) (w1 — 1)(21 — 2 — 7)

+$2:E1($2 — 1)(I1 — 1)(12 — 2)
=nn(n —1)(—1)(t+n—7-—4)

RpomeAM = (3 — 1)(z1 — 1)(22 — @) (11 — @)(z1 — 1)
+(z2 — 1) (21 — 1) (22 — Q)11 — Q)22 — )
= (21— 1)(22 — 1)(m1 — @) (22 — ¢)(21 + 22 — q275—f12

The defining condition involves the following 12 partitions:

(0,0),(1,0),(1,1),(2,0),(2,1),(3,0),(2,2),(3,1),(4,0), (3,2), (4,1), (5,0).

Note that (A1, A2) = (A1 + 7, \2), (¢*1 £, ¢*2). Because of the
factorizations, one can easily see that h, vanishes at all but (3,2).

Moreover, h, also vanishes at (m,0) and (m—1,1) Ym>6
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Let n =2, u = (3,2), one can find s, = P, = P\' = m, = 23 + 2743,

PoioA) = pay (3 — 1) (w1 — 1)(21 — 2 — 7)
+$2:E1($2 — 1)(I1 — 1)(12 — 2)
=nn(n —1)(—1)(t+n—7-—4)

RpomeAM = (3 — 1)(z1 — 1)(22 — @) (11 — @)(z1 — 1)
(12 — 1) (21 — )22 — @)(11 — )22 — ¢)
= (21— 1)(22 — 1)(m1 — @) (22 — ¢)(21 + 22 — 9275— fI2

The defining condition involves the following 12 partitions:

(0,0),(1,0),(1,1),(2,0),(2,1),(3,0),(2,2),(3,1),(4,0), (3,2), (4,1), (5,0).

Note that (A1, A2) = (A1 + 7, \2), (¢*1 £, ¢*2). Because of the
factorizations, one can easily see that h, vanishes at all but (3,2).

Moreover, h, also vanishes at (m,0) and (m—1,1) Ym>6
Warning: In most cases, no complete factorization!
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In general, it is a surprising fact that the interpolation polynomials
vanish at more points than required in the definition.

Proposition (Knop—Sahi, Okounkov '90s, Extra Vanishing Property)

hy(X) =0, unless A2 p.

Write A D pif A\; = py, 1 <i<my A:Dpif A D pand | = |pu| + 1.

Hong Chen (Rutgers) Binomial formula & interpolation poly 12/29
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In general, it is a surprising fact that the interpolation polynomials
vanish at more points than required in the definition.

Proposition (Knop—Sahi, Okounkov '90s, Extra Vanishing Property)

hy(X) =0, unless A2 p.

Write A D pif A\; = py, 1 <i<my A:Dpif A D pand | = |pu| + 1.

Definition ((Adjacent) Binomial Coefficients)

b)\,um A:D 3

0, otherwise,

A _
bap = <M) =h(N), an =

Binomial coefficients (for AJ) appear in the binomial formula:
PA(z+1;7) 5 <A> Pyu(w;7)
Pr(1;7)  \1/ - Pu(1;7)

Some combinatorial formulas for adjacent binomial coefficients are
given in [C-Sahi 24, Prop 4.3].
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Binomial formula for Jack
Interpolation polynomials

Properties of binomial coefficients
An application

For all four families of interpolation polynomials: AJ, AM, BJ, BM,

they have the following vanishing, positivity and monotonicity
properties.

[m] [l -
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Properties of binomial coefficients
An application

For all four families of interpolation polynomials: AJ, AM, BJ, BM,

they have the following vanishing, positivity and monotonicity
properties.

n

A
= 0 unless n > m; ( ) = 0 unless A D u [Knop—Sahi,
m 1
Okounkov, "90s];

[m] [l = =
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For all four families of interpolation polynomials: AJ, AM, BJ, BM,
they have the following vanishing, positivity and monotonicity
properties.

A
. <:;> = 0 unless n > m; <M> = 0 unless A D p [Knop-Sahi,

Okounkov, "90s];

° (;) >0 when n > m; (:) > 0 when A D p [Sahi ’11, C-Sahi "24];
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For all four families of interpolation polynomials: AJ, AM, BJ, BM,
they have the following vanishing, positivity and monotonicity
properties.

. <:;> =0 unless n > < > = 0 unless A D p [Knop-Sahi,

Okounkov, "90s];

° (;) >0 when n > ( ) > 0 when A D p [Sahi ’11, C-Sahi "24];

 (1)7 (1) woen vz ()

WV
WV

<“> when A D p [C-Sahi '24].
14
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For all four families of interpolation polynomials: AJ, AM, BJ, BM,
they have the following vanishing, positivity and monotonicity
properties.

. (:;) =0 unless n > ( > = 0 unless A D p [Knop-Sahi,

Okounkov, "90s];
° (n) >0 when n > ( ) > 0 when A D p [Sahi ’11, C-Sahi "24];
m
n
[ ]
k
Here, f> g means f— g € F5(, where F>( is some cone of positivity

defined for each family. For AJ, Fxo = {f/g| f, g € Zxo[7], 9 # 0}; for
AM, Fxo = {f€ Q(q t) | f(g,t) > 0 when ¢, t € (0,1) }.

\%

174 174

<7/Z> when n > m; (A) > <M> when A D p [C—-Sahi '24].
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For Jack polynomials

Pyx(z+1;7) M\ P (% 7)
Py(1;7) Z (1/) P,(1;

Theorem (C-Sahi ’24, Theorems 6.1 & 6.2)

TFAE:
@ )\ contains p;
Pa(z+1;7)  Pu(z+1;7) | ”
_ Jack tive;
A P Poi7) is Jack positive;
1 1
a ma(z+ ) — mu(ar—i- ) s monomial positive;
mx(1) my, (1)
1 1
A sae+1)  su(z+1) is Schur positive;
sx(1) s (1)
’ 1 4 1
o ex(z+1) _ Eu (@il is elementary positive.
ex (1) ew (1)

Hong Chen (Rutgers) Binomial formula & interpolation poly 14 /29
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Theorem (Cuttler—Greene—Skandera ’11, Sra ’16)

Let |\| = |u|. TFAE:

® )\ majorizes i, i.€., Ay + -+ Xg = 1 + - - - + py, for each i;

, s Lo ma(z)  my(2)

o (Muirhead’s inequality) A1) m >0, Vzel0,00)"
ex(z)  ew(x)
ex(1)  eu(1)
pa(2)  pu(2)

o (Newton’s inequality)

o (Gantmacher’s inequalit — >0, Vze|0,00)™
. L oa(@) su(e)
o (Sra’s inequalit — >0, Vze|0,00)™.
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Theorem (Cuttler—Greene—Skandera ’11, Sra ’16)

Let |\| = |u|. TFAE:
® )\ majorizes i, i.€., Ay + -+ Xg = 1 + - - - + py, for each i;

ma(e) _ my(z)

ma(1)  my(1)
ex(z)  ew(z)
ex(1)  ew(1)
pA(z)  pule)
pa(1
(@) su(2)

(Sra’s inequality) ——= —

sa(1) - su(1)

o (Muirhead’s inequality) >0, Vzel0,00)"

o (Newton’s inequality) >0, Vzel0,00)%

(Gantmacher’s inequality)

>0, Vzel0,00)%

~—
S
=
—
[
~

>0, VYzel0,00)"

Theorem (Khare-Tao ’18)

sx(z)  su(2)
sx(1)  su(1)

A weakly majorizes p if and only if >0, Vzel[l,o0)™

v
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Conjecture (C—Sahi '24, Conjecture 1)

e (CGS Conjecture for Jack polynomials) Let || = |u|. X\ majorizes
w if and only if

Py(z)  Pu(2) n.
Ta)_%>0, Vz € [0,00)";

o (KT Conjecture for Jack polynomials) \ weakly majorizes p if
and only if

0, Vze[l,o0)™

Note: It suffices to prove that A majorizes p implies Eq. (9).
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Pieri rule
Recursion
Weighted sum formula

Temporarily, consider the family AJ and AM only.

Lemma (Sahi ’11, Pieri Rule)

Let ey = (1,0"1) = (1,0,...,0) and u € P,,. Then

(h€1 (113) - h51 (/_J’)) : hlt(x) = Z (h’€1 (ﬁ) - h€1 (ﬁ)) a’V,uhV(m)' (9)

vDOp

Compare the two sides at A for |A| < |u| + 1.
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Let HXH = by, = he,(\). Write A = (a,\u) ,B= (b/\u) 7= (Hﬁ” 5/\u)'

Theorem (Sahi ’11, Recursion Formula)

© The following recursions characterize by,,:
(i) ban = 15 (@d) (X =17l ) br = 32 b (121 =17l - (20)
VD W

@ The matrices A, B, Z satisfy the commutation relations:

(i) [Z,B] = B[Z, 4], (i) [Z,B Y =-[2AB™" (11)

v

Evaluate the Pieri rule at \. O
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Theorem (Sahi "11, Weighted Sum Formula for by,)

Let A D p, and k= |A| — |ul.
k-1
b)\,u = Z Wt(C) H aCiCi+17 (12)
CEC,\“ =0
kol ‘ G —} Ci+1H
wt(¢) = H T — (13)
i=0 HCOH —‘ Ci+1H
where the sum is over all the chains ¢ = (o, . - ., Ck) with
A=Co:D¢: D :DCk-1:DC = N,
(i.e., standard tableaux of skew shape \/u).
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Pieri rule
Recursion
Weighted sum formula

Theorem (C—-Sahi, Lemma 3.1, Theorem 3.2, Theorem A)

The aforementioned Pieri rule, recursion formula, and weighted sum
formula hold for BJ, BM as well.
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Pieri rule
Recursion
Weighted sum formula

Theorem (C—-Sahi, Lemma 3.1, Theorem 3.2, Theorem A)

The aforementioned Pieri rule, recursion formula, and weighted sum
formula hold for BJ, BM as well.

Theorem (C—Sahi, Theorem B, Positivity)

The binomial coefficient by, € Fxo if and only if A D p.
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Littlewood-Richardson coefficients

Main Results: Binomial Coefficients

Pieri rule
Recursion
Weighted sum formula

Theorem (C-Sahi, Lemma 3.1, Theorem 3.2, Theorem A)

The aforementioned Pieri rule, recursion formula, and weighted sum
formula hold for BJ, BM as well.

Theorem (C—Sahi, Theorem B, Positivity)

The binomial coefficient by, € Fxo if and only if A D p.

The weight wt(¢) are positive by definition and the adjacent binomial
coefficients are positive by [C-Sahi 24, Prop 4.3], hence by the
weighted sum formula, the binomial coefficients are also positive. [l
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Proof

Littlewood—Richardson coefficients

Pieri rule
Recursion
Weighted sum formula

Theorem (C—Sahi, Theorem C, Monotonicity)

The difference by, — by, € Fxo if A D p.
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Theorem (C—Sahi, Theorem C, Monotonicity)

The difference by, — by, € Fxo if A D p.

It suffices to show when A:D p by the telescoping series technique.
For this, compare and examine the combinatorial formulas. O
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Definition (Littlewood-Richardson coefficients)

The Littlewood—Richardson coefficients are defined by the
product expansion

hu(@)hy (2) = eh,ha(2). (14)
A

Because the top degree terms of the interpolation polynomials are
related to be ordinary ones, these cﬁu generalize the usual LR
coefficients for Jack/Macdonald polynomials.

They are good for induction or recursion purpose, as interpolation
polynomials are inhomogeneous.
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nv

Fix v, and write C, = (c’\ ), D, = (b/wé)\u)-

Theorem (C—Sahi, Theorems 3.5 & 3.6, Recursion for ¢),,)

A

o The following recursions characterize c;,,

(Z) Cﬁu = bAP«

(i) (%] =tz e = > aca (| 1)
CDp

(15)
= 2 meehu (] - el
CCTA
o (i) C=B"'DB; (i) [Z C=IC,[Z A
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Littlewood—Richardson coefficients &

Theorem (C—-Sahi, Theorem D, Weighted Sum Formula for ¢

pz/)

Cﬁyz Z tLR HGCQH’ (16)
II (\5 [

k
Wi () = Y S b, (17)

T
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Pk Wigiee s Bommmmil
Littlewood-Richardson coefficients -

Theorem (C—-Sahi, Theorem D, Weighted Sum Formula for ¢

pz/)

C;);u = Z tLR H Oiirr (16)

CECH,
s
= - be- 1
wt, (C) ; (HCJ‘ ) & ( 7)
o0<isk
i#j

A special case: when A\ = v, cf; » = bau, and the weighted sum formula
for LR coefficients degenerates to that for binomial coeflicients.
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ighted Sum Formula for ¢

pz/)

C;)lu = Z wtlR (¢ H OeiCirrs (16)
(&l =)
GRS

0<i<k
P2

A special case: when A\ = v, cf; » = bau, and the weighted sum formula

for LR coefficients degenerates to that for binomial coeflicients.

Another special case: when \:D p, c;}u = axu(bry — bu)-

be.u

J

(17)

’

Theorem (C-Sahi, Theorem E)

Assume XD p, then C;)\w €Fso if A\ Dw.
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