Binomial formula and interpolation polynomials

Hong Chen hc813@math.rutgers.edu

Rutgers

July 19, 2024 Center for Combinatorics, Nankai University

Joint with my advisor Prof. Siddhartha Sahi. arXiv:2403.02490 Slides available on https://sites.math.rutgers.edu/~hc813/

- Introduction
 - Background
 - Preliminaries
- 2 Binomial formula and interpolation polynomials
 - Binomial formula for Jack
 - Interpolation polynomials
 - Properties of binomial coefficients
 - An application
- Proof
 - Pieri rule
 - Recursion
 - Weighted sum formula
- 4 Littlewood–Richardson coefficients
 - Definition
 - Recursion
 - Weighted sum formula

Binomial formula: the classical case

We have the classical Newton's binomial theorem.

Theorem

For non-negative integers m, n, and a variable x,

$$(x+1)^n = \sum_m \binom{n}{m} x^m.$$

In fact, n could be any real number, and x is a real number in a neighborhood of 0.

Question

How to generalize this to symmetric polynomials?

Binomial formula: the classical case

We have the classical Newton's binomial theorem.

Theorem

For non-negative integers m, n, and a variable x,

$$(x+1)^n = \sum_m \binom{n}{m} x^m.$$

In fact, n could be any real number, and x is a real number in a neighborhood of 0.

Question

How to generalize this to symmetric polynomials?

Partitions and symmetric polynomials

Fix $n \ge 1$, the number of variables.

A partition is a sequence $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$, such that

$$\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0.$$

Denote by \mathcal{P}_n the set of such partitions. The length $\ell(\lambda)$ is the number of non-zero parts, and the size is $|\lambda| = \sum \lambda_i$.

Many (any) interesting bases of the ring of symmetric polynomials are indexed by partitions, to name a few, the monomial $m_{\lambda} = \sum_{\alpha \sim \lambda} x^{\alpha}$, the power-sum $p_{\lambda} = p_{\lambda_1} \cdots p_{\lambda_{\ell}}$, and the elementary $e_{\lambda} = e_{\lambda_1} \cdots e_{\lambda_{\ell}}$, where $p_r = m_{(r)} = \sum_i x_i^r$, $e_r = m_{(1r)} = \sum_{i_1 < \cdots < i_r} x_{i_1} \cdots x_{i_r}$.

Partitions and symmetric polynomials

Fix $n \ge 1$, the number of variables.

A partition is a sequence $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$, such that

$$\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0.$$

Denote by \mathcal{P}_n the set of such partitions. The length $\ell(\lambda)$ is the number of non-zero parts, and the size is $|\lambda| = \sum \lambda_i$.

Many (any) interesting bases of the ring of symmetric polynomials are indexed by partitions, to name a few, the monomial $m_{\lambda} = \sum_{\alpha \sim \lambda} x^{\alpha}$, the power-sum $p_{\lambda} = p_{\lambda_1} \cdots p_{\lambda_{\ell}}$, and the elementary $e_{\lambda} = e_{\lambda_1} \cdots e_{\lambda_{\ell}}$, where $p_r = m_{(r)} = \sum_i x_i^r$, $e_r = m_{(1^r)} = \sum_{i_1 < \cdots < i_r} x_{i_1} \cdots x_{i_r}$.

The most important basis is perhaps Schur polynomials s_{λ} .

$$s_{\lambda} = \frac{\det(x_i^{\lambda_j + n - j})}{\det(x_i^{n - j})} = \det(e_{\lambda_i' - i + j}) = \sum_{T} \prod_{s \in \lambda} x_{T(s)}.$$

- For combinatorics, Schur polynomials are generating functions of Young tableaux.
- For rep theory, Schur polynomials correspond bijectively to all irreducible characters of the symmetric groups.

Schur polynomials can also be defined abstractly. Define an inner product $\langle \cdot, \cdot \rangle$ on Λ_n , the ring of symmetric polynomials in n variables by the following:

$$\langle p_{\lambda}, p_{\mu} \rangle = \delta_{\lambda \mu} z_{\lambda},$$

$$s_{\lambda} = m_{\lambda} + \sum_{\mu < \lambda} K_{\lambda\mu} m_{\mu}, \quad \langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda\mu}.$$

The most important basis is perhaps Schur polynomials s_{λ} .

$$s_{\lambda} = \frac{\det(x_i^{\lambda_j + n - j})}{\det(x_i^{n - j})} = \det(e_{\lambda_i' - i + j}) = \sum_{T} \prod_{s \in \lambda} x_{T(s)}.$$

- For combinatorics, Schur polynomials are generating functions of Young tableaux.
- For rep theory, Schur polynomials correspond bijectively to all irreducible characters of the symmetric groups.

Schur polynomials can also be defined abstractly. Define an inner product $\langle \cdot, \cdot \rangle$ on Λ_n , the ring of symmetric polynomials in n variables by the following:

$$\langle p_{\lambda}, p_{\mu} \rangle = \delta_{\lambda \mu} z_{\lambda},$$

$$s_{\lambda} = m_{\lambda} + \sum_{\mu < \lambda} K_{\lambda\mu} m_{\mu}, \quad \langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda\mu}.$$

The most important basis is perhaps Schur polynomials s_{λ} .

$$s_{\lambda} = \frac{\det(x_i^{\lambda_j + n - j})}{\det(x_i^{n - j})} = \det(e_{\lambda_i' - i + j}) = \sum_{T} \prod_{s \in \lambda} x_{T(s)}.$$

- For combinatorics, Schur polynomials are generating functions of Young tableaux.
- For rep theory, Schur polynomials correspond bijectively to all irreducible characters of the symmetric groups.

Schur polynomials can also be defined abstractly. Define an inner product $\langle \cdot, \cdot \rangle$ on Λ_n , the ring of symmetric polynomials in n variables, by the following:

$$\langle p_{\lambda}, p_{\mu} \rangle = \delta_{\lambda \mu} z_{\lambda},$$

$$s_{\lambda} = m_{\lambda} + \sum_{\mu < \lambda} K_{\lambda\mu} m_{\mu}, \quad \langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda\mu}.$$

The most important basis is perhaps Schur polynomials s_{λ} .

$$s_{\lambda} = \frac{\det(x_i^{\lambda_j + n - j})}{\det(x_i^{n - j})} = \det(e_{\lambda_i' - i + j}) = \sum_{T} \prod_{s \in \lambda} x_{T(s)}.$$

- For combinatorics, Schur polynomials are generating functions of Young tableaux.
- For rep theory, Schur polynomials correspond bijectively to all irreducible characters of the symmetric groups.

Schur polynomials can also be defined abstractly. Define an inner product $\langle \cdot, \cdot \rangle$ on Λ_n , the ring of symmetric polynomials in n variables, by the following:

$$\langle p_{\lambda}, p_{\mu} \rangle = \delta_{\lambda \mu} z_{\lambda},$$

$$s_{\lambda} = m_{\lambda} + \sum_{\mu < \lambda} K_{\lambda\mu} m_{\mu}, \quad \langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda\mu}.$$

Jack and Macdonald polynomials

One can define inner products on $\Lambda_n \otimes \mathbb{Q}(\tau)$ and $\Lambda_n \otimes \mathbb{Q}(q, t)$:

$$\langle p_{\lambda}, p_{\mu} \rangle_{\tau} = \delta_{\lambda \mu} z_{\lambda} \tau^{-\ell(\lambda)}, \quad \langle p_{\lambda}, p_{\mu} \rangle_{q,t} = \delta_{\lambda \mu} z_{\lambda} \prod_{i} \frac{1 - q^{\lambda_{i}}}{1 - t^{\lambda_{i}}}.$$

Then there is a unique $P_{\lambda}(x; \tau)$ in $\Lambda_n \otimes \mathbb{Q}(\alpha)$ and a unique $P_{\lambda}(x; q, t)$ in $\Lambda_n \otimes \mathbb{Q}(q, t)$, called **Jack** and **Macdonald** polynomials, satisfying

$$P_{\lambda} = m_{\lambda} + \sum_{\mu < \lambda} u_{\lambda\mu} m_{\mu}, \quad \langle P_{\lambda}, P_{\mu} \rangle = 0, \ \lambda \neq \mu.$$

Jack and Macdonald polynomials are generalizations of Schur and many other polynomials:

 $\tau = 1$ or q = t: Schur;

 $\tau = 0$ or t = 1: monomial;

 $\tau = \infty$ or q = 1: transposed elementary;

 $\tau = \frac{1}{2}$, 2: Zonal; q = 0: Hall-Littlewood; t = 0: q-Whittaker.

Jack and Macdonald polynomials

One can define inner products on $\Lambda_n \otimes \mathbb{Q}(\tau)$ and $\Lambda_n \otimes \mathbb{Q}(q, t)$:

$$\langle p_{\lambda}, p_{\mu} \rangle_{\tau} = \delta_{\lambda \mu} z_{\lambda} \tau^{-\ell(\lambda)}, \quad \langle p_{\lambda}, p_{\mu} \rangle_{q,t} = \delta_{\lambda \mu} z_{\lambda} \prod_{i} \frac{1 - q^{\lambda_{i}}}{1 - t^{\lambda_{i}}}.$$

Then there is a unique $P_{\lambda}(x; \tau)$ in $\Lambda_n \otimes \mathbb{Q}(\alpha)$ and a unique $P_{\lambda}(x; q, t)$ in $\Lambda_n \otimes \mathbb{Q}(q, t)$, called **Jack** and **Macdonald** polynomials, satisfying

$$P_{\lambda} = m_{\lambda} + \sum_{\mu < \lambda} u_{\lambda\mu} m_{\mu}, \quad \langle P_{\lambda}, P_{\mu} \rangle = 0, \ \lambda \neq \mu.$$

Jack and Macdonald polynomials are generalizations of Schur and many other polynomials:

```
\tau = 1 or q = t: Schur;

\tau = 0 or t = 1: monomial;
```

 $\tau = \infty$ or q = 1: transposed elementary;

 $\tau = \frac{1}{2}, 2$: Zonal; q = 0: Hall-Littlewood; t = 0: q-Whittaker.

Jack and Macdonald polynomials

One can define inner products on $\Lambda_n \otimes \mathbb{Q}(\tau)$ and $\Lambda_n \otimes \mathbb{Q}(q, t)$:

$$\langle p_{\lambda}, p_{\mu} \rangle_{\tau} = \delta_{\lambda \mu} z_{\lambda} \tau^{-\ell(\lambda)}, \quad \langle p_{\lambda}, p_{\mu} \rangle_{q,t} = \delta_{\lambda \mu} z_{\lambda} \prod_{i} \frac{1 - q^{\lambda_{i}}}{1 - t^{\lambda_{i}}}.$$

Then there is a unique $P_{\lambda}(x; \tau)$ in $\Lambda_n \otimes \mathbb{Q}(\alpha)$ and a unique $P_{\lambda}(x; q, t)$ in $\Lambda_n \otimes \mathbb{Q}(q, t)$, called **Jack** and **Macdonald** polynomials, satisfying

$$P_{\lambda} = m_{\lambda} + \sum_{\mu < \lambda} u_{\lambda\mu} m_{\mu}, \quad \langle P_{\lambda}, P_{\mu} \rangle = 0, \ \lambda \neq \mu.$$

Jack and Macdonald polynomials are generalizations of Schur and many other polynomials:

$$\tau = 1 \text{ or } q = t$$
: Schur;

$$\tau = 0$$
 or $t = 1$: monomial;

$$\tau = \infty$$
 or $q = 1$: transposed elementary;

$$\tau=\frac{1}{2},2$$
: Zonal; $q=0$: Hall–Littlewood; $t=0$: q -Whittaker.

- Introduction
 - Background
 - Preliminaries
- 2 Binomial formula and interpolation polynomials
 - Binomial formula for Jack
 - Interpolation polynomials
 - Properties of binomial coefficients
 - An application
- Proof
 - Pieri rule
 - Recursion
 - Weighted sum formula
- 4 Littlewood–Richardson coefficients
 - Definition
 - Recursion
 - Weighted sum formula

Let $x = (x_1, ..., x_n)$ and $\mathbf{1} = (1^n) = (1, ..., 1)$. Okounkov and Olshanski ('97) prove the following for Jack polynomials:

$$(x+1)^n = \sum_{m} \binom{n}{m} x^m$$
$$\frac{P_{\lambda}(x+1;\tau)}{P_{\lambda}(1;\tau)} = \sum_{\mu} \binom{\lambda}{\mu}_{\tau} \frac{P_{\mu}(x;\tau)}{P_{\mu}(1;\tau)}$$

$$\binom{n}{m} = \frac{x(x-1)\cdots(x-m+1)}{m!} \bigg|_{x=n}$$

$$\binom{\lambda}{\mu}_{\tau} = h_{\mu}(x;\tau) \bigg|_{x=n}$$

These h_{μ} are called interpolation Jack polynomials [Sahi '94, Knop–Sahi '96], also called shifted Jack polynomials by Okounkov.

Let $x = (x_1, ..., x_n)$ and $\mathbf{1} = (1^n) = (1, ..., 1)$. Okounkov and Olshanski ('97) prove the following for Jack polynomials:

$$(x+1)^n = \sum_m \binom{n}{m} x^m$$
$$\frac{P_{\lambda}(x+1;\tau)}{P_{\lambda}(1;\tau)} = \sum_{\mu} \binom{\lambda}{\mu}_{\tau} \frac{P_{\mu}(x;\tau)}{P_{\mu}(1;\tau)}$$

$$\binom{n}{m} = \frac{x(x-1)\cdots(x-m+1)}{m!} \bigg|_{x=n}$$
$$\binom{\lambda}{\mu}_{\tau} = h_{\mu}(x;\tau) \bigg|_{x=\overline{\lambda}}$$

These h_{μ} are called interpolation Jack polynomials [Sahi '94, Knop–Sahi '96], also called shifted Jack polynomials by Okounkov.

Definition

The unital interpolation polynomial, denoted by h_{μ} , is the unique symmetric function that satisfies the following interpolation condition and degree condition:

$$h_{\mu}(\overline{\lambda}) = \delta_{\lambda\mu}, \quad \forall \lambda \in \mathcal{P}_n, \ |\lambda| \leqslant |\mu|,$$
 (1)

$$\deg h_{\mu} = |\mu|,\tag{2}$$

where $\overline{\lambda}_i = \lambda_i + (n-i)\tau$ in the Jack case, and $\overline{\lambda}_i = q^{\lambda_i}t^{n-i}$ in the Macdonald case.

This normalization is called *unital* as $\binom{\mu}{\mu} = h_{\mu}(\overline{\mu}) = 1$.

There are other normalizations: monic, whose top degree part is the monic Jack/Macdonald P_{μ} ; integral, whose top degree part is the integral Jack/Macdonald J_{μ} .

Knop–Sahi in the '90s. Okounkov also introduced type BC interpolation polynomials, defined by setting $\overline{\lambda}_i = \lambda_i + (n-i)\tau + \alpha$ and $aq^{\lambda_i}t^{n-i}$.

Definition

The unital interpolation polynomial, denoted by h_{μ} , is the unique symmetric function that satisfies the following interpolation condition and degree condition:

$$h_{\mu}(\overline{\lambda}) = \delta_{\lambda\mu}, \quad \forall \lambda \in \mathcal{P}_n, \ |\lambda| \leqslant |\mu|,$$
 (1)

$$\deg h_{\mu} = |\mu|,\tag{2}$$

where $\overline{\lambda}_i = \lambda_i + (n-i)\tau$ in the Jack case, and $\overline{\lambda}_i = q^{\lambda_i}t^{n-i}$ in the Macdonald case.

This normalization is called *unital* as $\binom{\mu}{\mu} = h_{\mu}(\overline{\mu}) = 1$. There are other normalizations: *monic*, whose top degree part is the monic Jack/Macdonald P_{μ} ; *integral*, whose top degree part is the integral Jack/Macdonald J_{μ} .

The above is type A interpolation polynomials, introduced by Knop–Sahi in the '90s. Okounkov also introduced type BC interpolation polynomials, defined by setting $\overline{\lambda}_i = \lambda_i + (n-i)\tau + \alpha$ and $aq^{\lambda_i}t^{n-i}$.

Definition

The unital interpolation polynomial, denoted by h_{μ} , is the unique symmetric function that satisfies the following interpolation condition and degree condition:

$$h_{\mu}(\overline{\lambda}) = \delta_{\lambda\mu}, \quad \forall \lambda \in \mathcal{P}_n, \ |\lambda| \leqslant |\mu|,$$
 (1)

$$\deg h_{\mu} = |\mu|,\tag{2}$$

where $\overline{\lambda}_i = \lambda_i + (n-i)\tau$ in the Jack case, and $\overline{\lambda}_i = q^{\lambda_i}t^{n-i}$ in the Macdonald case.

This normalization is called *unital* as $\binom{\mu}{\mu} = h_{\mu}(\overline{\mu}) = 1$.

There are other normalizations: monic, whose top degree part is the monic Jack/Macdonald P_{μ} ; integral, whose top degree part is the integral Jack/Macdonald J_{μ} .

The above is type A interpolation polynomials, introduced by Knop–Sahi in the '90s. Okounkov also introduced type BC interpolation polynomials, defined by setting $\overline{\lambda}_i = \lambda_i + (n-i)\tau + \alpha$ and $aq^{\lambda_i}t^{n-i}$.

Okounkov–Olshanski proved the following combinatorial formulas:

$$P_{\lambda}^{\text{monic,J}}(x;\tau) = \sum_{T} \psi_{T}(\tau) \prod_{s \in \lambda} x_{T(s)}, \tag{3}$$

$$h_{\lambda}^{\text{monic},AJ}(x;\tau) = \sum_{T} \psi_{T}(\tau) \prod_{s \in \lambda} \left(x_{T(s)} - \left(a_{\lambda}'(s) + (n - T(s) - l_{\lambda}'(s))\tau \right) \right), \tag{4}$$

$$h_{\lambda}^{\text{monic},BJ}(x;\tau,\alpha) = \sum_{T} \psi_{T}(\tau) \prod_{s \in \lambda} \left(x_{T(s)}^{2} - \left(a_{\lambda}'(s) + (n - T(s) - l_{\lambda}'(s))\tau + \alpha \right)^{2} \right), \tag{5}$$

$$P_{\lambda}^{\text{monic,M}}(x;q,t) = \sum_{T} \psi_{T}(q,t) \prod_{s \in \lambda} x_{T(s)}, \tag{6}$$

$$h_{\lambda}^{\text{monic,AM}}(x;q,t) = \sum_{T} \psi_{T}(q,t) \prod_{s \in \lambda} \left(x_{T(s)} - q^{a_{\lambda}'(s)} t^{n-T(s)-l_{\lambda}'(s)} \right),$$
 (7)

$$h_{\lambda}^{\text{monic},BM}(x;q,t,a) = \sum_{T} \psi_{T}(q,t) \prod_{s \in \lambda} \left(x_{T(s)} + x_{T(s)}^{-1} \right)$$
 (8)

$$=q^{a'_{\boldsymbol{\lambda}}(s)}t^{n-T(s)-l'_{\boldsymbol{\lambda}}(s)}a-\left(q^{a'_{\boldsymbol{\lambda}}(s)}t^{n-T(s)-l'_{\boldsymbol{\lambda}}(s)}a
ight)^{-1}$$

where all the sums are over column-strict reverse tableaux $T: \lambda \to [n]$, i.e., weakly decreasing along the rows and strictly decreasing along the columns.

Binomial formula for Jack
Interpolation polynomials
Properties of binomial coefficient
An application

Let
$$n = 2$$
, $\mu = (3, 2)$, one can find $s_{\mu} = P_{\mu}^{J} = P_{\mu}^{M} = m_{\mu} = x_{1}^{3}x_{2}^{2} + x_{1}^{2}x_{2}^{3}$,

$$h_{\mu}^{\text{monic},AJ} = x_{2}x_{1}(x_{2} - 1)(x_{1} - 1)(x_{1} - 2 - \tau) + x_{2}x_{1}(x_{2} - 1)(x_{1} - 1)(x_{2} - 2)$$

$$= x_{1}x_{2}(x_{1} - 1)(x_{2} - 1)(x_{1} + x_{2} - \tau - 4)$$

$$h_{\mu}^{\text{monic},AM} = (x_2 - 1)(x_1 - 1)(x_2 - q)(x_1 - q)(x_1 - q^2 t)$$

$$+ (x_2 - 1)(x_1 - 1)(x_2 - q)(x_1 - q)(x_2 - q^2)$$

$$= (x_1 - 1)(x_2 - 1)(x_1 - q)(x_2 - q)(x_1 + x_2 - q^2 t - q^2)$$

The defining condition involves the following 12 partitions:

$$(0,0),(1,0),(1,1),(2,0),(2,1),(3,0),(2,2),(3,1),(4,0),(3,2),(4,1),(5,0)$$

Note that $(\lambda_1, \lambda_2) = (\lambda_1 + \tau, \lambda_2), (q^{\alpha_1}t, q^{\alpha_2})$. Because of the factorizations, one can easily see that h_{μ} vanishes at all but (3, 2). Moreover, h_{μ} also vanishes at (m, 0) and $(m - 1, 1) \forall m \ge 6$.

Warning: In most cases, no complete factorization!

Binomial formula for Jack
Interpolation polynomials
Properties of binomial coefficien
An application

Let
$$n = 2$$
, $\mu = (3, 2)$, one can find $s_{\mu} = P_{\mu}^{J} = P_{\mu}^{M} = m_{\mu} = x_{1}^{3}x_{2}^{2} + x_{1}^{2}x_{2}^{3}$,

$$h_{\mu}^{\text{monic, AJ}} = x_{2}x_{1}(x_{2} - 1)(x_{1} - 1)(x_{1} - 2 - \tau) + x_{2}x_{1}(x_{2} - 1)(x_{1} - 1)(x_{2} - 2)$$

$$= x_{1}x_{2}(x_{1} - 1)(x_{2} - 1)(x_{1} + x_{2} - \tau - 4)$$

$$h_{\mu}^{\text{monic},AM} = (x_2 - 1)(x_1 - 1)(x_2 - q)(x_1 - q)(x_1 - q^2 t)$$

$$+ (x_2 - 1)(x_1 - 1)(x_2 - q)(x_1 - q)(x_2 - q^2)$$

$$= (x_1 - 1)(x_2 - 1)(x_1 - q)(x_2 - q)(x_1 + x_2 - q^2 t - q^2)$$

The defining condition involves the following 12 partitions:

$$(0,0),(1,0),(1,1),(2,0),(2,1),(3,0),(2,2),(3,1),(4,0),(3,2),(4,1),(5,0).$$

Note that $\overline{(\lambda_1, \lambda_2)} = (\lambda_1 + \tau, \lambda_2), (q^{\lambda_1} t, q^{\lambda_2})$. Because of the factorizations, one can easily see that h_{μ} vanishes at all but $\overline{(3, 2)}$.

Moreover, h_{μ} also vanishes at $\overline{(m,0)}$ and $\overline{(m-1,1)} \ \forall m \geq 6$. Warning: In most cases, no complete factorization!

Binomial formula for Jack
Interpolation polynomials
Properties of binomial coefficien
An application

Let
$$n = 2$$
, $\mu = (3, 2)$, one can find $s_{\mu} = P_{\mu}^{J} = P_{\mu}^{M} = m_{\mu} = x_{1}^{3}x_{2}^{2} + x_{1}^{2}x_{2}^{3}$,

$$h_{\mu}^{\text{monic},AJ} = x_{2}x_{1}(x_{2} - 1)(x_{1} - 1)(x_{1} - 2 - \tau) + x_{2}x_{1}(x_{2} - 1)(x_{1} - 1)(x_{2} - 2)$$

$$= x_{1}x_{2}(x_{1} - 1)(x_{2} - 1)(x_{1} + x_{2} - \tau - 4)$$

$$h_{\mu}^{\text{monic},AM} = (x_2 - 1)(x_1 - 1)(x_2 - q)(x_1 - q)(x_1 - q^2 t)$$

$$+ (x_2 - 1)(x_1 - 1)(x_2 - q)(x_1 - q)(x_2 - q^2)$$

$$= (x_1 - 1)(x_2 - 1)(x_1 - q)(x_2 - q)(x_1 + x_2 - q^2 t - q^2)$$

The defining condition involves the following 12 partitions:

$$(0,0), (1,0), (1,1), (2,0), (2,1), (3,0), (2,2), (3,1), (4,0), (3,2), (4,1), (5,0).$$

Note that $(\lambda_1, \lambda_2) = (\lambda_1 + \tau, \lambda_2), (q^{\lambda_1}t, q^{\lambda_2})$. Because of the factorizations, one can easily see that h_{μ} vanishes at all but (3, 2). Moreover, h_{μ} also vanishes at (m, 0) and $(m - 1, 1) \forall m \ge 6$.

Warning: In most cases, no complete factorization!

Binomial formula for Jack
Interpolation polynomials
Properties of binomial coefficient
An application

Let
$$n = 2$$
, $\mu = (3, 2)$, one can find $s_{\mu} = P_{\mu}^{J} = P_{\mu}^{M} = m_{\mu} = x_{1}^{3}x_{2}^{2} + x_{1}^{2}x_{2}^{3}$,

$$h_{\mu}^{\text{monic, AJ}} = x_{2}x_{1}(x_{2} - 1)(x_{1} - 1)(x_{1} - 2 - \tau) + x_{2}x_{1}(x_{2} - 1)(x_{1} - 1)(x_{2} - 2)$$

$$= x_{1}x_{2}(x_{1} - 1)(x_{2} - 1)(x_{1} + x_{2} - \tau - 4)$$

$$h_{\mu}^{\text{monic},AM} = (x_2 - 1)(x_1 - 1)(x_2 - q)(x_1 - q)(x_1 - q^2 t)$$

$$+ (x_2 - 1)(x_1 - 1)(x_2 - q)(x_1 - q)(x_2 - q^2)$$

$$= (x_1 - 1)(x_2 - 1)(x_1 - q)(x_2 - q)(x_1 + x_2 - q^2 t - q^2)$$

The defining condition involves the following 12 partitions:

$$(0,0), (1,0), (1,1), (2,0), (2,1), (3,0), (2,2), (3,1), (4,0), (3,2), (4,1), (5,0).$$

Note that $\overline{(\lambda_1, \lambda_2)} = (\lambda_1 + \tau, \lambda_2), (q^{\lambda_1} t, q^{\lambda_2})$. Because of the factorizations, one can easily see that h_{μ} vanishes at all but $\overline{(3,2)}$.

Moreover, h_{μ} also vanishes at $\overline{(m,0)}$ and $\overline{(m-1,1)} \forall m \ge 6$.

Warning: In most cases, no complete factorization!

Binomial formula for Jack
Interpolation polynomials
Properties of binomial coefficients
An application

In general, it is a surprising fact that the interpolation polynomials vanish at more points than required in the definition.

Proposition (Knop–Sahi, Okounkov '90s, Extra Vanishing Property)

$$h_{\mu}(\overline{\lambda}) = 0, \quad unless \quad \lambda \supseteq \mu.$$

Write $\lambda \supseteq \mu$ if $\lambda_i \geqslant \mu_i$, $1 \leqslant i \leqslant n$; $\lambda : \supset \mu$ if $\lambda \supseteq \mu$ and $|\lambda| = |\mu| + 1$.

Definition ((Adjacent) Binomial Coefficients)

$$b_{\lambda\mu} = \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = h_{\mu}(\overline{\lambda}), \quad a_{\lambda\mu} \coloneqq \begin{cases} b_{\lambda\mu}, & \lambda : \supset \mu; \\ 0, & \text{otherwise,} \end{cases}$$

Binomial coefficients (for AJ) appear in the binomial formula:

$$\frac{P_{\lambda}(x+1;\tau)}{P_{\lambda}(1;\tau)} = \sum_{\mu} \binom{\lambda}{\mu}_{\tau} \frac{P_{\mu}(x;\tau)}{P_{\mu}(1;\tau)}$$

Some combinatorial formulas for adjacent binomial coefficients are given in [C–Sahi '24, Prop 4.3].

Binomial formula for Jack
Interpolation polynomials
Properties of binomial coefficients
An application

In general, it is a surprising fact that the interpolation polynomials vanish at more points than required in the definition.

Proposition (Knop–Sahi, Okounkov '90s, Extra Vanishing Property)

$$h_{\mu}(\overline{\lambda}) = 0, \quad unless \quad \lambda \supseteq \mu.$$

Write $\lambda \supseteq \mu$ if $\lambda_i \geqslant \mu_i$, $1 \leqslant i \leqslant n$; $\lambda :\supset \mu$ if $\lambda \supseteq \mu$ and $|\lambda| = |\mu| + 1$.

Definition ((Adjacent) Binomial Coefficients)

$$b_{\lambda\mu} = \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = h_{\mu}(\overline{\lambda}), \quad a_{\lambda\mu} := \begin{cases} b_{\lambda\mu}, & \lambda : \supset \mu; \\ 0, & \text{otherwise,} \end{cases}$$

Binomial coefficients (for AJ) appear in the binomial formula:

$$\frac{P_{\lambda}(x+\mathbf{1};\tau)}{P_{\lambda}(\mathbf{1};\tau)} = \sum_{\mu} \binom{\lambda}{\mu}_{\tau} \frac{P_{\mu}(x;\tau)}{P_{\mu}(\mathbf{1};\tau)}$$

Some combinatorial formulas for adjacent binomial coefficients are given in [C–Sahi '24, Prop 4.3].

•
$$\binom{n}{m}=0$$
 unless $n\geqslant m;$ $\binom{\lambda}{\mu}=0$ unless $\lambda\supseteq\mu$ [Knop–Sahi, Okounkov, '90s];

$$\bullet \ \binom{n}{m} > 0 \text{ when } n \geqslant m; \ \binom{\lambda}{\mu} > 0 \text{ when } \lambda \supseteq \mu \text{ [Sahi '11, C-Sahi '24]};$$

•
$$\binom{n}{k} \geqslant \binom{m}{k}$$
 when $n \geqslant m$; $\binom{\lambda}{\nu} \geqslant \binom{\mu}{\nu}$ when $\lambda \supseteq \mu$ [C-Sahi '24]

•
$$\binom{n}{m}=0$$
 unless $n\geqslant m;$ $\binom{\lambda}{\mu}=0$ unless $\lambda\supseteq\mu$ [Knop–Sahi, Okounkov, '90s];

$$\bullet \ \binom{n}{m} > 0 \text{ when } n \geqslant m; \ \binom{\lambda}{\mu} > 0 \text{ when } \lambda \supseteq \mu \text{ [Sahi '11, C-Sahi '24]};$$

$$\bullet \ \binom{n}{k} \geqslant \binom{m}{k} \text{ when } n \geqslant m; \ \binom{\lambda}{\nu} \geqslant \binom{\mu}{\nu} \text{ when } \lambda \supseteq \mu \text{ [C-Sahi '24]}.$$

- $\binom{n}{m} = 0$ unless $n \ge m$; $\binom{\lambda}{\mu} = 0$ unless $\lambda \supseteq \mu$ [Knop–Sahi, Okounkov, '90s];
- $\bullet \ \binom{n}{m} > 0 \text{ when } n \geqslant m; \ \binom{\lambda}{\mu} > 0 \text{ when } \lambda \supseteq \mu \text{ [Sahi '11, C-Sahi '24]};$

•
$$\binom{n}{k} \geqslant \binom{m}{k}$$
 when $n \geqslant m$; $\binom{\lambda}{\nu} \geqslant \binom{\mu}{\nu}$ when $\lambda \supseteq \mu$ [C–Sahi '24].

- $\binom{n}{m} = 0$ unless $n \ge m$; $\binom{\lambda}{\mu} = 0$ unless $\lambda \supseteq \mu$ [Knop–Sahi, Okounkov, '90s];
- $\bullet \ \binom{n}{m} > 0 \text{ when } n \geqslant m; \ \binom{\lambda}{\mu} > 0 \text{ when } \lambda \supseteq \mu \text{ [Sahi '11, C-Sahi '24]};$
- $\binom{n}{k} \geqslant \binom{m}{k}$ when $n \geqslant m$; $\binom{\lambda}{\nu} \geqslant \binom{\mu}{\nu}$ when $\lambda \supseteq \mu$ [C–Sahi '24].

- $\binom{n}{m} = 0$ unless $n \ge m$; $\binom{\lambda}{\mu} = 0$ unless $\lambda \supseteq \mu$ [Knop–Sahi, Okounkov, '90s];
- $\bullet \ \binom{n}{m} > 0 \text{ when } n \geqslant m; \ \binom{\lambda}{\mu} > 0 \text{ when } \lambda \supseteq \mu \text{ [Sahi '11, C-Sahi '24]};$
- $\binom{n}{k} \geqslant \binom{m}{k}$ when $n \geqslant m$; $\binom{\lambda}{\nu} \geqslant \binom{\mu}{\nu}$ when $\lambda \supseteq \mu$ [C–Sahi '24].

Binomial formula for Jack Interpolation polynomials Properties of binomial coefficients An application

For Jack polynomials

$$\frac{P_{\lambda}(x+\mathbf{1};\tau)}{P_{\lambda}(\mathbf{1};\tau)} = \sum_{\nu \subseteq \lambda} \binom{\lambda}{\nu} \frac{P_{\nu}(x;\tau)}{P_{\nu}(\mathbf{1};\tau)}$$

Theorem (C-Sahi '24, Theorems 6.1 & 6.2)

TFAE:

- λ contains μ ;
- $\frac{P_{\lambda}(x+1;\tau)}{P_{\lambda}(1;\tau)} \frac{P_{\mu}(x+1;\tau)}{P_{\mu}(1;\tau)}$ is Jack positive;
- $\frac{m_{\lambda}(x+1)}{m_{\lambda}(1)} \frac{m_{\mu}(x+1)}{m_{\mu}(1)}$ is monomial positive;
- $\frac{s_{\lambda}(x+1)}{s_{\lambda}(1)} \frac{s_{\mu}(x+1)}{s_{\mu}(1)}$ is Schur positive;
- $\frac{e_{\lambda'}(x+1)}{e_{\lambda'}(1)} \frac{e_{\mu'}(x+1)}{e_{\mu'}(1)}$ is elementary positive.

Binomial formula for Jack Interpolation polynomials Properties of binomial coefficients An application

Theorem (Cuttler–Greene–Skandera '11, Sra '16)

Let $|\lambda| = |\mu|$. TFAE:

- λ majorizes μ , i.e., $\lambda_1 + \cdots + \lambda_i \geqslant \mu_1 + \cdots + \mu_i$, for each i;
- (Muirhead's inequality) $\frac{m_{\lambda}(x)}{m_{\lambda}(\mathbf{1})} \frac{m_{\mu}(x)}{m_{\mu}(\mathbf{1})} \geqslant 0$, $\forall x \in [0, \infty)^n$;
- (Newton's inequality) $\frac{e_{\lambda'}(x)}{e_{\lambda'}(\mathbf{1})} \frac{e_{\mu'}(x)}{e_{\mu'}(\mathbf{1})} \geqslant 0, \quad \forall x \in [0, \infty)^n;$
- (Gantmacher's inequality) $\frac{p_{\lambda}(x)}{p_{\lambda}(\mathbf{1})} \frac{p_{\mu}(x)}{p_{\mu}(\mathbf{1})} \geqslant 0, \quad \forall x \in [0, \infty)^n;$
- (Sra's inequality) $\frac{s_{\lambda}(x)}{s_{\lambda}(1)} \frac{s_{\mu}(x)}{s_{\mu}(1)} \geqslant 0$, $\forall x \in [0, \infty)^n$.

Theorem (Khare–Tao '18)

 λ weakly majorizes μ if and only if $\frac{s_{\lambda}(x)}{s_{\lambda}(1)} - \frac{s_{\mu}(x)}{s_{\mu}(1)} \geqslant 0$, $\forall x \in [1, \infty)^n$

Theorem (Cuttler–Greene–Skandera '11, Sra '16)

Let $|\lambda| = |\mu|$. TFAE:

- λ majorizes μ , i.e., $\lambda_1 + \cdots + \lambda_i \ge \mu_1 + \cdots + \mu_i$, for each i;
- (Muirhead's inequality) $\frac{m_{\lambda}(x)}{m_{\lambda}(\mathbf{1})} \frac{m_{\mu}(x)}{m_{\mu}(\mathbf{1})} \geqslant 0, \quad \forall x \in [0, \infty)^n;$
- $\bullet \ \ (Newton's \ inequality) \ \frac{e_{\lambda'}(x)}{e_{\lambda'}(\mathbf{1})} \frac{e_{\mu'}(x)}{e_{\mu'}(\mathbf{1})} \geqslant 0, \quad \forall x \in [0,\infty)^n;$
- (Gantmacher's inequality) $\frac{p_{\lambda}(x)}{p_{\lambda}(1)} \frac{p_{\mu}(x)}{p_{\mu}(1)} \geqslant 0, \quad \forall x \in [0, \infty)^n;$
- (Sra's inequality) $\frac{s_{\lambda}(x)}{s_{\lambda}(1)} \frac{s_{\mu}(x)}{s_{\mu}(1)} \geqslant 0$, $\forall x \in [0, \infty)^n$.

Theorem (Khare–Tao '18)

 λ weakly majorizes μ if and only if $\frac{s_{\lambda}(x)}{s_{\lambda}(1)} - \frac{s_{\mu}(x)}{s_{\mu}(1)} \geqslant 0$, $\forall x \in [1, \infty)^n$.

Conjecture (C-Sahi '24, Conjecture 1)

• (CGS Conjecture for Jack polynomials) Let $|\lambda| = |\mu|$. λ majorizes μ if and only if

$$\frac{P_{\lambda}(x)}{P_{\lambda}(\mathbf{1})} - \frac{P_{\mu}(x)}{P_{\mu}(\mathbf{1})} \geqslant 0, \quad \forall x \in [0, \infty)^n;$$

• (KT Conjecture for Jack polynomials) λ weakly majorizes μ if and only if

$$\frac{P_{\lambda}(x)}{P_{\lambda}(\mathbf{1})} - \frac{P_{\mu}(x)}{P_{\mu}(\mathbf{1})} \geqslant 0, \quad \forall x \in [1, \infty)^{n}.$$

Note: It suffices to prove that λ majorizes μ implies Eq. (9).

- Introduction
 - Background
 - Preliminaries
- 2 Binomial formula and interpolation polynomials
 - Binomial formula for Jack
 - Interpolation polynomials
 - Properties of binomial coefficients
 - An application
- Proof
 - Pieri rule
 - Recursion
 - Weighted sum formula
- 4 Littlewood–Richardson coefficients
 - Definition
 - Recursion
 - Weighted sum formula

Temporarily, consider the family AJ and AM only.

Lemma (Sahi '11, Pieri Rule)

Let
$$\varepsilon_1 = (1, 0^{n-1}) = (1, 0, \dots, 0)$$
 and $\mu \in \mathcal{P}_n$. Then

$$\left(h_{\varepsilon_1}(x) - h_{\varepsilon_1}(\overline{\mu})\right) \cdot h_{\mu}(x) = \sum_{\nu \supset \mu} \left(h_{\varepsilon_1}(\overline{\nu}) - h_{\varepsilon_1}(\overline{\mu})\right) a_{\nu\mu} h_{\nu}(x). \tag{9}$$

Proof.

Compare the two sides at $\overline{\lambda}$ for $|\lambda| \leq |\mu| + 1$.

Let
$$\|\overline{\lambda}\| = b_{\lambda \varepsilon_1} = h_{\varepsilon_1}(\overline{\lambda})$$
. Write $A = (a_{\lambda \mu}), B = (b_{\lambda \mu}), Z = (\|\overline{\mu}\| \delta_{\lambda \mu})$.

Theorem (Sahi '11, Recursion Formula)

• The following recursions characterize $b_{\lambda\mu}$:

$$(i) \ b_{\lambda\lambda} = 1; (ii) \ \left(\left\| \overline{\lambda} \right\| - \left\| \overline{\mu} \right\| \right) b_{\lambda\mu} = \sum_{\nu \supset \mu} b_{\lambda\nu} \left(\left\| \overline{\nu} \right\| - \left\| \overline{\mu} \right\| \right) a_{\nu\mu}. \ (10)$$

 $oldsymbol{\circ}$ The matrices A,B,Z satisfy the commutation relations:

(i)
$$[Z, B] = B[Z, A],$$
 (ii) $[Z, B^{-1}] = -[Z, A]B^{-1}.$ (11)

Proof.

Evaluate the Pieri rule at $\overline{\lambda}$.

Theorem (Sahi '11, Weighted Sum Formula for $b_{\lambda\mu}$)

Let $\lambda \supseteq \mu$, and $k := |\lambda| - |\mu|$.

$$b_{\lambda\mu} = \sum_{\zeta \in \mathfrak{C}_{\lambda\mu}} \operatorname{wt}(\zeta) \prod_{i=0}^{k-1} a_{\zeta_i \zeta_{i+1}}, \tag{12}$$

$$\operatorname{wt}(\zeta) := \prod_{i=0}^{k-1} \frac{\left\| \overline{\zeta_i} \right\| - \left\| \overline{\zeta_{i+1}} \right\|}{\left\| \overline{\zeta_0} \right\| - \left\| \overline{\zeta_{i+1}} \right\|}. \tag{13}$$

where the sum is over all the chains $\boldsymbol{\zeta} = (\zeta_0, \dots, \zeta_k)$ with

$$\lambda = \zeta_0 :\supset \zeta_1 :\supset \cdots :\supset \zeta_{k-1} :\supset \zeta_k = \mu,$$

(i.e., standard tableaux of skew shape λ/μ).

Main Results: Binomial Coefficients

Theorem (C-Sahi, Lemma 3.1, Theorem 3.2, Theorem A)

The aforementioned Pieri rule, recursion formula, and weighted sum formula hold for BJ, BM as well.

Theorem (C-Sahi, Theorem B, Positivity)

The binomial coefficient $b_{\lambda\mu} \in \mathbb{F}_{>0}$ if and only if $\lambda \supseteq \mu$.

Proof

The weight $\operatorname{wt}(\zeta)$ are positive by definition and the adjacent binomial coefficients are positive by [C–Sahi '24, Prop 4.3], hence by the weighted sum formula, the binomial coefficients are also positive.

Main Results: Binomial Coefficients

Theorem (C–Sahi, Lemma 3.1, Theorem 3.2, Theorem A)

The aforementioned Pieri rule, recursion formula, and weighted sum formula hold for BJ, BM as well.

Theorem (C-Sahi, Theorem B, Positivity)

The binomial coefficient $b_{\lambda\mu} \in \mathbb{F}_{>0}$ if and only if $\lambda \supseteq \mu$.

Proof

The weight $\operatorname{wt}(\zeta)$ are positive by definition and the adjacent binomial coefficients are positive by [C–Sahi '24, Prop 4.3], hence by the weighted sum formula, the binomial coefficients are also positive.

Main Results: Binomial Coefficients

Theorem (C-Sahi, Lemma 3.1, Theorem 3.2, Theorem A)

The aforementioned Pieri rule, recursion formula, and weighted sum formula hold for BJ, BM as well.

Theorem (C-Sahi, Theorem B, Positivity)

The binomial coefficient $b_{\lambda\mu} \in \mathbb{F}_{>0}$ if and only if $\lambda \supseteq \mu$.

Proof.

The weight $\operatorname{wt}(\zeta)$ are positive by definition and the adjacent binomial coefficients are positive by [C–Sahi '24, Prop 4.3], hence by the weighted sum formula, the binomial coefficients are also positive.

Theorem (C-Sahi, Theorem C, Monotonicity)

The difference $b_{\lambda\nu} - b_{\mu\nu} \in \mathbb{F}_{\geqslant 0}$ if $\lambda \supseteq \mu$.

Proof.

It suffices to show when $\lambda :\supset \mu$ by the telescoping series technique. For this, compare and examine the combinatorial formulas.

Theorem (C-Sahi, Theorem C, Monotonicity)

The difference $b_{\lambda\nu} - b_{\mu\nu} \in \mathbb{F}_{\geqslant 0}$ if $\lambda \supseteq \mu$.

Proof.

It suffices to show when $\lambda : \supset \mu$ by the telescoping series technique. For this, compare and examine the combinatorial formulas.

Definition (Littlewood–Richardson coefficients)

The Littlewood–Richardson coefficients are defined by the product expansion

$$h_{\mu}(x)h_{\nu}(x) = \sum_{\lambda} c_{\mu\nu}^{\lambda} h_{\lambda}(x). \tag{14}$$

Because the top degree terms of the interpolation polynomials are related to be ordinary ones, these $c_{\mu\nu}^{\lambda}$ generalize the usual LR coefficients for Jack/Macdonald polynomials.

They are good for induction or recursion purpose, as interpolation polynomials are inhomogeneous. Fix ν , and write $C_{\nu} = \left(c_{\mu\nu}^{\lambda}\right)$, $D_{\nu} = \left(b_{\mu\nu}\delta_{\lambda\mu}\right)$.

Theorem (C-Sahi, Theorems 3.5 & 3.6, Recursion for $c_{\mu\nu}^{\lambda}$)

• The following recursions characterize $c_{\mu\nu}^{\lambda}$:

(i)
$$c_{\lambda\mu}^{\lambda} = b_{\lambda\mu}$$

(ii) $\left(\left\|\overline{\lambda}\right\| - \left\|\overline{\mu}\right\|\right) c_{\mu\nu}^{\lambda} = \sum_{\zeta \supset \mu} c_{\zeta\nu}^{\lambda} a_{\zeta\mu} \left(\left\|\overline{\zeta}\right\| - \left\|\overline{\mu}\right\|\right) - \sum_{\zeta \subset \lambda} a_{\lambda\zeta} c_{\mu\nu}^{\zeta} \left(\left\|\overline{\lambda}\right\| - \left\|\overline{\zeta}\right\|\right).$ (15)

• (i)
$$C = B^{-1}DB$$
; (ii) $[Z, C] = [C, [Z, A]]$.

Theorem (C–Sahi, Theorem D, Weighted Sum Formula for $c_{\mu\nu}^{\lambda}$)

$$c_{\mu\nu}^{\lambda} = \sum_{\zeta \in \mathfrak{C}_{\lambda\mu}} \operatorname{wt}_{\nu}^{LR}(\zeta) \prod_{i=0}^{k-1} a_{\zeta_i \zeta_{i+1}},$$
 (16)

$$\operatorname{wt}_{\nu}^{\operatorname{LR}}(\zeta) := \sum_{j=0}^{k} \frac{\prod_{0 \leq i \leq k-1} \left(\left\| \overline{\zeta_{i}} \right\| - \left\| \overline{\zeta_{i+1}} \right\| \right)}{\prod_{\substack{0 \leq i \leq k \\ i \neq j}} \left(\left\| \overline{\zeta_{j}} \right\| - \left\| \overline{\zeta_{i}} \right\| \right)} b_{\zeta_{j}\nu}. \tag{17}$$

A special case: when $\lambda = \nu$, $c_{\mu\lambda}^{\lambda} = b_{\lambda\mu}$, and the weighted sum formula for LR coefficients degenerates to that for binomial coefficients. Another special case: when $\lambda : \supset \mu$, $c_{\mu\nu}^{\lambda} = a_{\lambda\mu}(b_{\lambda\nu} - b_{\mu\nu})$.

Theorem (C-Sahi, Theorem E)

Assume $\lambda:\supset \mu$, then $c_{\mu\nu}^{\lambda}\in \mathbb{F}_{\geqslant 0}$ if $\lambda\supseteq \nu$.

Theorem (C–Sahi, Theorem D, Weighted Sum Formula for $c_{\mu\nu}^{\lambda}$)

$$c_{\mu\nu}^{\lambda} = \sum_{\zeta \in \mathfrak{C}_{\lambda\mu}} \operatorname{wt}_{\nu}^{LR}(\zeta) \prod_{i=0}^{k-1} a_{\zeta_{i}\zeta_{i+1}},$$
 (16)

$$\operatorname{wt}_{\nu}^{\operatorname{LR}}(\zeta) := \sum_{j=0}^{k} \frac{\prod_{0 \leq i \leq k-1} \left(\left\| \overline{\zeta_{i}} \right\| - \left\| \overline{\zeta_{i+1}} \right\| \right)}{\prod_{\substack{0 \leq i \leq k \\ i \neq j}} \left(\left\| \overline{\zeta_{j}} \right\| - \left\| \overline{\zeta_{i}} \right\| \right)} b_{\zeta_{j}\nu}. \tag{17}$$

A special case: when $\lambda = \nu$, $c_{\mu\lambda}^{\lambda} = b_{\lambda\mu}$, and the weighted sum formula for LR coefficients degenerates to that for binomial coefficients.

Another special case: when $\lambda : \supset \mu$, $c_{\mu\nu}^{\lambda} = a_{\lambda\mu}(b_{\lambda\nu} - b_{\mu\nu})$.

Theorem (C-Sahi, Theorem E)

Assume $\lambda :\supset \mu$, then $c_{\mu\nu}^{\lambda} \in \mathbb{F}_{\geqslant 0}$ if $\lambda \supseteq \nu$.

Theorem (C–Sahi, Theorem D, Weighted Sum Formula for $c_{\mu\nu}^{\lambda}$)

$$c_{\mu\nu}^{\lambda} = \sum_{\zeta \in \mathfrak{C}_{\lambda\mu}} \operatorname{wt}_{\nu}^{LR}(\zeta) \prod_{i=0}^{k-1} a_{\zeta_{i}\zeta_{i+1}},$$
 (16)

$$\operatorname{wt}_{\nu}^{\operatorname{LR}}(\zeta) := \sum_{j=0}^{k} \frac{\prod_{0 \leq i \leq k-1} \left(\left\| \overline{\zeta_{i}} \right\| - \left\| \overline{\zeta_{i+1}} \right\| \right)}{\prod_{\substack{0 \leq i \leq k \\ i \neq j}} \left(\left\| \overline{\zeta_{j}} \right\| - \left\| \overline{\zeta_{i}} \right\| \right)} b_{\zeta_{j}\nu}. \tag{17}$$

A special case: when $\lambda = \nu$, $c_{\mu\lambda}^{\lambda} = b_{\lambda\mu}$, and the weighted sum formula for LR coefficients degenerates to that for binomial coefficients. Another special case: when $\lambda : \supset \mu$, $c_{\mu\nu}^{\lambda} = a_{\lambda\mu}(b_{\lambda\nu} - b_{\mu\nu})$.

Theorem (C-Sahi, Theorem E)

Assume $\lambda : \supset \mu$, then $c_{\mu\nu}^{\lambda} \in \mathbb{F}_{\geqslant 0}$ if $\lambda \supseteq \nu$.

Thank you!

References I

Siddhartha Sahi. "The spectrum of certain invariant differential operators associated to a Hermitian symmetric space". In: *Lie theory and geometry*. Vol. 123. Progr. Math. Birkhäuser Boston, Boston, MA, 1994, pp. 569–576. DOI: 10.1007/978-1-4612-0261-5\\ 21.

Friedrich Knop and Siddhartha Sahi. "Difference equations and symmetric polynomials defined by their zeros". In: *Internat. Math. Res. Notices* 10 (1996), pp. 473–486. DOI: 10.1155/S1073792896000311.

A. Okounkov and G. Olshanski. "Shifted Jack polynomials, binomial formula, and applications". In: *Mathematical research letters* 4.1 (1997), pp. 67–78. DOI: 10.4310/MRL.1997.v4.n1.a7.

References II

pp. 359–369. DOI: 10.1090/conm/557/11039.

Siddhartha Sahi. "Binomial Coefficients and Littlewood-Richardson Coefficients for Jack Polynomials". In: International mathematics research notices (2011). DOI: 10.1093/imrn/rnq126.

Allison Cuttler, Curtis Greene, and Mark Skandera.

"Inequalities for symmetric means". In: European Journal of Combinatorics 32.6 (Aug. 2011), pp. 745-761. DOI: 10.1016/j.ejc.2011.01.020.

References III

Apoorva Khare and Terence Tao. "Schur polynomials, entrywise positivity preservers, and weak majorization". In: Séminaire Lotharingien de Combinatoire 80B (2018).