Symmetric polynomials and interpolation polynomials

Hong Chen hc813@math.rutgers.edu

Rutgers

Joint with my advisor Prof. Siddhartha Sahi. arXiv:2403.02490 Slides available on https://sites.math.rutgers.edu/~hc813/

Binomial formula: the classical case

We have the classical Newton's binomial theorem.

Theorem

For non-negative integers m, n, and a variable x,

$$(x+1)^n = \sum_m \binom{n}{m} x^m$$

In fact, n could be any real number, and x is a real number in a neighborhood of 0.

Question

How to generalize this to symmetric polynomials?

Binomial formula: the classical case

We have the classical Newton's binomial theorem.

Theorem

For non-negative integers m, n, and a variable x,

$$(x+1)^n = \sum_m \binom{n}{m} x^m$$

In fact, n could be any real number, and x is a real number in a neighborhood of 0.

Question

How to generalize this to symmetric polynomials?

Partitions and symmetric polynomials

Fix $n \ge 1$, the number of variables.

A partition is a sequence $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$, such that

$$\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0.$$

Denote by \mathcal{P}_n the set of such partitions. The length $\ell(\lambda)$ is the number of non-zero parts, and the size is $|\lambda| = \sum \lambda_i$.

Many (any) interesting bases of the ring of symmetric polynomials are indexed by partitions, to name a few, the monomial $m_{\lambda} = \sum_{\alpha \sim \lambda} x^{\alpha}$, the power-sum $p_{\lambda} = p_{\lambda_1} \cdots p_{\lambda_{\ell}}$, and the elementary $e_{\lambda} = e_{\lambda_1} \cdots e_{\lambda_{\ell}}$, where $p_r = m_{(r)} = \sum_i x_i^r$, $e_r = m_{(1^r)} = \sum_{i_1 < \cdots < i_r} x_{i_1} \cdots x_{i_r}$.

Partitions and symmetric polynomials

Fix $n \ge 1$, the number of variables.

A partition is a sequence $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$, such that

$$\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0.$$

Denote by \mathcal{P}_n the set of such partitions. The length $\ell(\lambda)$ is the number of non-zero parts, and the size is $|\lambda| = \sum \lambda_i$.

Many (any) interesting bases of the ring of symmetric polynomials are indexed by partitions, to name a few, the monomial $m_{\lambda} = \sum_{\alpha \sim \lambda} x^{\alpha}$, the power-sum $p_{\lambda} = p_{\lambda_1} \cdots p_{\lambda_{\ell}}$, and the elementary $e_{\lambda} = e_{\lambda_1} \cdots e_{\lambda_{\ell}}$, where $p_r = m_{(r)} = \sum_i x_i^r$, $e_r = m_{(1^r)} = \sum_{i_1 < \cdots < i_r} x_{i_1} \cdots x_{i_r}$.

The most important basis is perhaps Schur polynomials s_{λ} .

$$s_{\lambda} = \frac{\det(x_i^{\lambda_j + n - j})}{\det(x_i^{n - j})} = \det(e_{\lambda_i' - i + j}) = \sum_{T} \prod_{s \in \lambda} x_{T(s)}.$$

- For combinatorics, Schur polynomials are generating functions of Young tableaux.
- For rep theory, Schur polynomials correspond bijectively to all irreducible characters of the symmetric groups.

Jack $P_{\lambda}^{(\alpha)}(x)$ and Macdonald $P_{\lambda}(x;q,t)$ are generalizations of Schur and many other polynomials.

```
Schur: \alpha = 1 or q = t;
monomial: \alpha = \infty or t = 1;
transposed elementary: \alpha = 0 or q = 1.
```


The most important basis is perhaps Schur polynomials s_{λ} .

$$s_{\lambda} = \frac{\det(x_i^{\lambda_j + n - j})}{\det(x_i^{n - j})} = \det(e_{\lambda_i' - i + j}) = \sum_{T} \prod_{s \in \lambda} x_{T(s)}.$$

- \bullet For combinatorics, Schur polynomials are generating functions of Young tableaux.
- For rep theory, Schur polynomials correspond bijectively to all irreducible characters of the symmetric groups.

Jack $P_{\lambda}^{(\alpha)}(x)$ and Macdonald $P_{\lambda}(x;q,t)$ are generalizations of Schur and many other polynomials.

Schur: $\alpha = 1$ or q = t; monomial: $\alpha = \infty$ or t = 1; transposed elementary: $\alpha = 0$ or a = 1

The most important basis is perhaps Schur polynomials s_{λ} .

$$s_{\lambda} = \frac{\det(x_i^{\lambda_j + n - j})}{\det(x_i^{n - j})} = \det(e_{\lambda_i' - i + j}) = \sum_{T} \prod_{s \in \lambda} x_{T(s)}.$$

- \bullet For combinatorics, Schur polynomials are generating functions of Young tableaux.
- For rep theory, Schur polynomials correspond bijectively to all irreducible characters of the symmetric groups.

Jack $P_{\lambda}^{(\alpha)}(x)$ and Macdonald $P_{\lambda}(x; q, t)$ are generalizations of Schur and many other polynomials. Schur: $\alpha = 1$ or q = t;

monomial: $\alpha = \infty$ or t = 1;

transposed elementary: $\alpha = 0$ or q = 1.

The most important basis is perhaps Schur polynomials s_{λ} .

$$s_{\lambda} = \frac{\det(x_i^{\lambda_j + n - j})}{\det(x_i^{n - j})} = \det(e_{\lambda_i' - i + j}) = \sum_{T} \prod_{s \in \lambda} x_{T(s)}.$$

- \bullet For combinatorics, Schur polynomials are generating functions of Young tableaux.
- For rep theory, Schur polynomials correspond bijectively to all irreducible characters of the symmetric groups.

Jack $P_{\lambda}^{(\alpha)}(x)$ and Macdonald $P_{\lambda}(x;q,t)$ are generalizations of Schur and many other polynomials.

```
Schur: \alpha = 1 or q = t;
monomial: \alpha = \infty or t = 1;
transposed elementary: \alpha = 0 or q = 1.
```


The most important basis is perhaps Schur polynomials s_{λ} .

$$s_{\lambda} = \frac{\det(x_i^{\lambda_j + n - j})}{\det(x_i^{n - j})} = \det(e_{\lambda_i' - i + j}) = \sum_{T} \prod_{s \in \lambda} x_{T(s)}.$$

- \bullet For combinatorics, Schur polynomials are generating functions of Young tableaux.
- For rep theory, Schur polynomials correspond bijectively to all irreducible characters of the symmetric groups.

Jack $P_{\lambda}^{(\alpha)}(x)$ and Macdonald $P_{\lambda}(x;q,t)$ are generalizations of Schur and many other polynomials.

Schur: $\alpha = 1$ or q = t;

monomial: $\alpha = \infty$ or t = 1;

transposed elementary: $\alpha = 0$ or q = 1.

Binomial formula: the Jack case

Let $x = (x_1, ..., x_n)$ and $\mathbf{1} = (1^n) = (1, ..., 1)$. Okounkov and Olshanski ('97) prove the following for Jack polynomials:

$$(x+1)^n = \sum_m \binom{n}{m} x^m$$
$$\frac{P_{\lambda}(x+1)}{P_{\lambda}(1)} = \sum_{\mu} \binom{\lambda}{\mu} \frac{P_{\mu}(x)}{P_{\mu}(1)}$$

$$\binom{n}{m} = \frac{x(x-1)\cdots(x-m+1)}{m!}\bigg|_{x=n}$$
$$\binom{\lambda}{\mu} = P_{\mu}^{*}(x)\bigg|_{x=1}$$

These P_{μ}^{*} are called shifted Jack polynomials. A (un)shifted version is interpolation Jack polynomials [Sahi '94], [Knop–Sahi '96].

 $x(x-1)\cdots(x-m+1)$ is inhomogeneous, with top deg part = x^m . P_{μ}^* is inhomogeneous, with top deg part = a multiple of P_{μ} .

Binomial formula: the Jack case

Let $x = (x_1, ..., x_n)$ and $\mathbf{1} = (1^n) = (1, ..., 1)$. Okounkov and Olshanski ('97) prove the following for Jack polynomials:

$$(x+1)^n = \sum_{m} \binom{n}{m} x^m$$

$$\frac{P_{\lambda}(x+1)}{P_{\lambda}(1)} = \sum_{\mu} \binom{\lambda}{\mu} \frac{P_{\mu}(x)}{P_{\mu}(1)}$$

$$\binom{n}{m} = \frac{x(x-1)\cdots(x-m+1)}{m!} \bigg|_{x=n}$$

$$\binom{\lambda}{\mu} = P_{\mu}^*(x) \bigg|_{x=\lambda}$$
alled shifted Jack polynomials. A (un

These P_{μ}^{*} are called shifted Jack polynomials. A (un)shifted version is interpolation Jack polynomials [Sahi '94], [Knop–Sahi '96].

 $x(x-1)\cdots(x-m+1)$ is inhomogeneous, with top deg part $=x^m$.

 P_{μ}^{*} is inhomogeneous, with top deg part = a multiple of P_{μ} .

Definition

The unital interpolation polynomial, denoted by h_{μ} , is the unique symmetric function that satisfies the following interpolation condition and degree condition:

$$h_{\mu}(\overline{\lambda}) = \delta_{\lambda\mu}, \quad \forall \lambda \in \mathcal{P}_n, \ |\lambda| \leqslant |\mu|,$$
 (1)

$$\deg h_{\mu} = |\mu| \tag{2}$$

where $\overline{\lambda}_i = \lambda_i + (n-i)/\alpha$.

$$(0,0), (1,0), (1,1), (2,0), (2,1), (3,0), (2,2), (3,1), (4,0), (3,2), (4,1), (5,0).$$

Warning: In most cases, no complete factorization!

Definition

The unital interpolation polynomial, denoted by h_{μ} , is the unique symmetric function that satisfies the following interpolation condition and degree condition:

$$h_{\mu}(\overline{\lambda}) = \delta_{\lambda\mu}, \quad \forall \lambda \in \mathcal{P}_n, \ |\lambda| \leqslant |\mu|,$$
 (1)

$$\deg h_{\mu} = |\mu| \tag{2}$$

where $\overline{\lambda}_i = \lambda_i + (n-i)/\alpha$.

Let n=2, $\mu=(3,2)$, $h_{\mu}^{\text{monic}}=x_1x_2(x_1-1)(x_2-1)(x_1+x_2-1/\alpha-4)$. The defining condition involves the following 12 partitions:

$$(0,0), (1,0), (1,1), (2,0), (2,1), (3,0), (2,2), (3,1), (4,0), (3,2), (4,1), (5,0).$$

We have $(\lambda_1, \lambda_2) = (\lambda_1 + 1/\alpha, \lambda_2)$. Because of the factorizations, one can easily see that h_{μ} vanishes at all but $\overline{(3,2)}$.

Moreover, h_{μ} also vanishes at (m,0) and (m-1,1) $\forall m \geq 6$.

Warning: In most cases, no complete factorization!

Definition

The unital interpolation polynomial, denoted by h_{μ} , is the unique symmetric function that satisfies the following interpolation condition and degree condition:

$$h_{\mu}(\overline{\lambda}) = \delta_{\lambda\mu}, \quad \forall \lambda \in \mathcal{P}_n, \ |\lambda| \leqslant |\mu|,$$
 (1)

$$\deg h_{\mu} = |\mu| \tag{2}$$

where $\overline{\lambda}_i = \lambda_i + (n-i)/\alpha$.

Let n=2, $\mu=(3,2)$, $h_{\mu}^{\text{monic}}=x_1x_2(x_1-1)(x_2-1)(x_1+x_2-1/\alpha-4)$. The defining condition involves the following 12 partitions:

$$(0,0), (1,0), (1,1), (2,0), (2,1), (3,0), (2,2), (3,1), (4,0), (3,2), (4,1), (5,0).$$

We have $\overline{(\lambda_1, \lambda_2)} = (\lambda_1 + 1/\alpha, \lambda_2)$. Because of the factorizations, one can easily see that h_{μ} vanishes at all but $\overline{(3,2)}$.

Moreover, h_{μ} also vanishes at $\overline{(m,0)}$ and $\overline{(m-1,1)} \ \forall m \geqslant 6$.

Warning: In most cases, no complete factorization!

Definition

The unital interpolation polynomial, denoted by h_{μ} , is the unique symmetric function that satisfies the following interpolation condition and degree condition:

$$h_{\mu}(\overline{\lambda}) = \delta_{\lambda\mu}, \quad \forall \lambda \in \mathcal{P}_n, \ |\lambda| \leqslant |\mu|,$$
 (1)

$$\deg h_{\mu} = |\mu| \tag{2}$$

where $\overline{\lambda}_i = \lambda_i + (n-i)/\alpha$.

Let n=2, $\mu=(3,2)$, $h_{\mu}^{\text{monic}}=x_1x_2(x_1-1)(x_2-1)(x_1+x_2-1/\alpha-4)$. The defining condition involves the following 12 partitions:

$$(0,0),(1,0),(1,1),(2,0),(2,1),(3,0),(2,2),(3,1),(4,0),(3,2),(4,1),(5,0).$$

We have $\overline{(\lambda_1, \lambda_2)} = (\lambda_1 + 1/\alpha, \lambda_2)$. Because of the factorizations, one can easily see that h_{μ} vanishes at all but $\overline{(3,2)}$.

Moreover, h_{μ} also vanishes at $\overline{(m,0)}$ and $\overline{(m-1,1)} \ \forall m \geqslant 6$.

Warning: In most cases, no complete factorization!

Define a partial order on partitions: $\lambda \supseteq \mu$ if $\lambda_i \geqslant \mu_i$ for each *i*.

•
$$\binom{n}{m}=0$$
 unless $n\geqslant m;$ $\binom{\lambda}{\mu}=0$ unless $\lambda\supseteq\mu$ [Knop–Sahi, Okounkov '90s];

•
$$\binom{n}{m} > 0$$
 when $n \geqslant m$; $\binom{\lambda}{\mu} > 0$ when $\lambda \supseteq \mu$ [Sahi '11, C–Sahi '24];

•
$$\binom{n}{k} \geqslant \binom{m}{k}$$
 when $n \geqslant m$; $\binom{\lambda}{\nu} \geqslant \binom{\mu}{\nu}$ when $\lambda \supseteq \mu$ [C-Sahi '24]

Moreover, there are interpolation Macdonald polynomials; as well as interpolation Jack and Macdonald polynomials of type BC. We prove the positivity and the monotonicity for binomial coefficients associated to these interpolation polynomials (Theorems B and C).

Define a partial order on partitions: $\lambda \supseteq \mu$ if $\lambda_i \geqslant \mu_i$ for each *i*.

- $\binom{n}{m} > 0$ when $n \ge m$; $\binom{\lambda}{\mu} > 0$ when $\lambda \supseteq \mu$ [Sahi '11, C–Sahi '24];
- $\binom{n}{k} \geqslant \binom{m}{k}$ when $n \geqslant m$; $\binom{\lambda}{\nu} \geqslant \binom{\mu}{\nu}$ when $\lambda \supseteq \mu$ [C–Sahi '24].

Moreover, there are interpolation Macdonald polynomials; as well as interpolation Jack and Macdonald polynomials of type BC. We prove the positivity and the monotonicity for binomial coefficient associated to these interpolation polynomials (Theorems B and C).

Define a partial order on partitions: $\lambda \supseteq \mu$ if $\lambda_i \geqslant \mu_i$ for each *i*.

- $\binom{n}{m}=0$ unless $n\geqslant m;$ $\binom{\lambda}{\mu}=0$ unless $\lambda\supseteq\mu$ [Knop–Sahi, Okounkov '90s];
- $\bullet \, \binom{n}{m} > 0 \text{ when } n \geqslant m; \, \binom{\lambda}{\mu} > 0 \text{ when } \lambda \supseteq \mu \text{ [Sahi '11, C-Sahi '24]};$

•
$$\binom{n}{k} \geqslant \binom{m}{k}$$
 when $n \geqslant m$; $\binom{\lambda}{\nu} \geqslant \binom{\mu}{\nu}$ when $\lambda \supseteq \mu$ [C–Sahi '24].

Moreover, there are interpolation Macdonald polynomials; as well as interpolation Jack and Macdonald polynomials of type BC. We prove the positivity and the monotonicity for binomial coefficients associated to these interpolation polynomials (Theorems B and C)

Define a partial order on partitions: $\lambda \supseteq \mu$ if $\lambda_i \geqslant \mu_i$ for each *i*.

- $\binom{n}{m}=0$ unless $n\geqslant m;$ $\binom{\lambda}{\mu}=0$ unless $\lambda\supseteq\mu$ [Knop–Sahi, Okounkov '90s];
- $\binom{n}{m} > 0$ when $n \ge m$; $\binom{\lambda}{\mu} > 0$ when $\lambda \supseteq \mu$ [Sahi '11, C–Sahi '24];
- $\bullet \ \binom{n}{k} \geqslant \binom{m}{k} \text{ when } n \geqslant m; \ \binom{\lambda}{\nu} \geqslant \binom{\mu}{\nu} \text{ when } \lambda \supseteq \mu \text{ [C-Sahi '24]}.$

Moreover, there are interpolation Macdonald polynomials; as well as interpolation Jack and Macdonald polynomials of type BC. We prove the positivity and the monotonicity for binomial coefficients associated to these interpolation polynomials (Theorems B and C).

Define a partial order on partitions: $\lambda \supseteq \mu$ if $\lambda_i \geqslant \mu_i$ for each *i*.

- $\binom{n}{m}=0$ unless $n\geqslant m;$ $\binom{\lambda}{\mu}=0$ unless $\lambda\supseteq\mu$ [Knop–Sahi, Okounkov '90s];
- $\bullet \, \binom{n}{m} > 0 \text{ when } n \geqslant m; \, \binom{\lambda}{\mu} > 0 \text{ when } \lambda \supseteq \mu \text{ [Sahi '11, C-Sahi '24]};$
- $\bullet \, \begin{pmatrix} n \\ k \end{pmatrix} \geqslant \begin{pmatrix} m \\ k \end{pmatrix} \text{ when } n \geqslant m; \, \begin{pmatrix} \lambda \\ \nu \end{pmatrix} \geqslant \begin{pmatrix} \mu \\ \nu \end{pmatrix} \text{ when } \lambda \supseteq \mu \text{ [C-Sahi '24]}.$

Moreover, there are interpolation Macdonald polynomials; as well as interpolation Jack and Macdonald polynomials of type BC.

We prove the positivity and the monotonicity for binomial coefficients associated to these interpolation polynomials (Theorems B and C).

Define a partial order on partitions: $\lambda \supseteq \mu$ if $\lambda_i \geqslant \mu_i$ for each *i*.

- $\binom{n}{m} = 0$ unless $n \geqslant m$; $\binom{\lambda}{\mu} = 0$ unless $\lambda \supseteq \mu$ [Knop–Sahi, Okounkov '90s];
- $\bullet \, \binom{n}{m} > 0 \text{ when } n \geqslant m; \, \binom{\lambda}{\mu} > 0 \text{ when } \lambda \supseteq \mu \text{ [Sahi '11, C-Sahi '24]};$
- $\bullet \ \binom{n}{k} \geqslant \binom{m}{k} \text{ when } n \geqslant m; \ \binom{\lambda}{\nu} \geqslant \binom{\mu}{\nu} \text{ when } \lambda \supseteq \mu \text{ [C-Sahi '24]}.$

Moreover, there are interpolation Macdonald polynomials; as well as interpolation Jack and Macdonald polynomials of type BC.

We prove the positivity and the monotonicity for binomial coefficients associated to these interpolation polynomials (Theorems B and C).

Application

For Jack polynomials

$$P_{\lambda}(x+1) = \sum_{\nu} {\lambda \choose \nu} P_{\nu}(x)$$

Theorem (C-Sahi '24, Theorem F)

TFAE:

- λ contains μ ;
- $\frac{P_{\lambda}(x+1)}{P_{\lambda}(1)} \frac{P_{\mu}(x+1)}{P_{\mu}(1)}$ is **Jack positive**;
- $\frac{m_{\lambda}(x+1)}{m_{\lambda}(1)} \frac{m_{\mu}(x+1)}{m_{\mu}(1)}$ is monomial positive;
- $\frac{s_{\lambda}(x+1)}{s_{\lambda}(1)} \frac{s_{\mu}(x+1)}{s_{\mu}(1)}$ is Schur positive;
- $ullet rac{e_{\lambda'}(x+1)}{e_{\lambda'}(1)} rac{e_{\mu'}(x+1)}{e_{\mu'}(1)} \ is \ {m elementary \ positive}.$

Related results

Theorem (Cuttler–Greene–Skandera '11, Sra '16)

Let $|\lambda| = |\mu|$. TFAE:

- λ majorizes μ , i.e., $\lambda_1 + \cdots + \lambda_i \geqslant \mu_1 + \cdots + \mu_i$, for each i;
- (Muirhead's inequality) $\frac{m_{\lambda}(x)}{m_{\lambda}(\mathbf{1})} \frac{m_{\mu}(x)}{m_{\mu}(\mathbf{1})} \geqslant 0, \quad \forall x \in [0, \infty)^n;$
- (Newton's inequality) $\frac{e_{\lambda'}(x)}{e_{\lambda'}(1)} \frac{e_{\mu'}(x)}{e_{\mu'}(1)} \geqslant 0, \quad \forall x \in [0, \infty)^n;$
- (Gantmacher's inequality) $\frac{p_{\lambda}(x)}{p_{\lambda}(1)} \frac{p_{\mu}(x)}{p_{\mu}(1)} \geqslant 0, \quad \forall x \in [0, \infty)^n;$
- (Sra's inequality) $\frac{s_{\lambda}(x)}{s_{\lambda}(1)} \frac{s_{\mu}(x)}{s_{\mu}(1)} \geqslant 0$, $\forall x \in [0, \infty)^n$.

Theorem (Khare–Tao '18)

 λ weakly majorizes μ if and only if $\frac{s_{\lambda}(x)}{s_{\lambda}(1)} - \frac{s_{\mu}(x)}{s_{\mu}(1)} \geqslant 0$, $\forall x \in [0, \infty)^n$.

Related results

Theorem (Cuttler-Greene-Skandera '11, Sra '16)

Let $|\lambda| = |\mu|$. TFAE:

- λ majorizes μ , i.e., $\lambda_1 + \cdots + \lambda_i \geqslant \mu_1 + \cdots + \mu_i$, for each i;
- (Muirhead's inequality) $\frac{m_{\lambda}(x)}{m_{\lambda}(\mathbf{1})} \frac{m_{\mu}(x)}{m_{\mu}(\mathbf{1})} \geqslant 0, \quad \forall x \in [0, \infty)^n;$
- $\bullet \ \ (Newton's \ inequality) \ \frac{e_{\lambda'}(x)}{e_{\lambda'}(\mathbf{1})} \frac{e_{\mu'}(x)}{e_{\mu'}(\mathbf{1})} \geqslant 0, \quad \forall x \in [0,\infty)^n;$
- (Gantmacher's inequality) $\frac{p_{\lambda}(x)}{p_{\lambda}(1)} \frac{p_{\mu}(x)}{p_{\mu}(1)} \geqslant 0, \quad \forall x \in [0, \infty)^n;$
- (Sra's inequality) $\frac{s_{\lambda}(x)}{s_{\lambda}(1)} \frac{s_{\mu}(x)}{s_{\mu}(1)} \geqslant 0$, $\forall x \in [0, \infty)^n$.

Theorem (Khare–Tao '18)

 λ weakly majorizes μ if and only if $\frac{s_{\lambda}(x)}{s_{\lambda}(1)} - \frac{s_{\mu}(x)}{s_{\mu}(1)} \geqslant 0$, $\forall x \in [0, \infty)^n$.

Conjecture

Conjecture

• (CGS Conjecture for Jack polynomials) Let $|\lambda| = |\mu|$. λ majorizes μ if and only if

$$\frac{P_{\lambda}(x)}{P_{\lambda}(1)} - \frac{P_{\mu}(x)}{P_{\mu}(1)} \geqslant 0, \quad \forall x \in [0, \infty)^n;$$
(3)

• (KT Conjecture for Jack polynomials) λ weakly majorizes μ if and only if

$$\frac{P_{\lambda}(x)}{P_{\lambda}(1)} - \frac{P_{\mu}(x)}{P_{\mu}(1)} \geqslant 0, \quad \forall x \in [1, \infty)^{n}.$$
(4)

Note: It suffices to prove that λ majorizes μ implies Eq. (3).

