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The classical case

We have the classical Newton’s binomial theorem.

Theorem
For non-negative integers m,n, and a variable x,

(x + 1)n =
∑
m

(
n
m

)
xm

In fact, n could be any real number, and x is a real number in a
neighborhood of 0.

Question
How to generalize this to symmetric polynomials, that is, multivariate
polynomials whose variables are symmetric?
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Partitions and Schur functions

A partition is a sequence λ = (λ1, . . . , λn) ∈ Zn, such that

λ1 ⩾ λ2 ⩾ · · · ⩾ λn ⩾ 0.

Many (any) interesting bases of the ring of symmetric polynomials are
indexed by partitions, to name a few, the monomial mλ, the
power-sum pλ, the elementary eλ, the complete hλ.

The most important and interesting are perhaps Schur polynomials sλ.
• For rep theory, Schur polynomials correspond bijectively to all
irreducible characters of the symmetric groups.
• For combinatorics, sλ(x) =

∑
T xwt(T) is the generating function of

Young tableaux.
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The binomial formula for Schur
Let x = (x1, . . . , xN) and 1 = (1N) = (1, . . . , 1), and
Sλ(x) = sλ(x)/sλ(1) is the normalized Schur.
Okounkov and Olshanski prove the following:

(x + 1)n =
∑
m

(
n
m

)
xm

Sλ(x + 1) =
∑
µ

(
λ

µ

)
Sµ(x)

(
n
m

)
=

x(x − 1) · · · (x − m + 1)
m!

∣∣∣∣∣
x=n(

λ

µ

)
= S∗

µ(x)
∣∣∣∣∣
x=λ

These S∗
µ are called interpolation Schur (also known as shifted Schur,

factorial Schur).

x(x − 1) · · · (x − m + 1) is inhomo. of degree m, top deg part = xm.
S∗
µ is inhomo. of degree deg(Sµ) = |µ|, top deg part = multiple of Sµ.9
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Vanishing, positivity, monotonicity and our work

Define a partial order on partitions: λ ⊇ µ if λi ⩾ µi for each i.

•
(

n
m

)
= 0 unless n ⩾ m;

(
λ

µ

)
= 0 unless λ ⊇ µ.

•
(

n
m

)
> 0 when n ⩾ m;

(
λ

µ

)
> 0 when λ ⊇ µ.

•
(

n
m

)
⩾

(
n′

m

)
when n ⩾ n′;

(
λ

µ

)
⩾

(
λ′

µ

)
when λ ⊇ λ′.

The vanishing and positivity are known. We prove the monotonicity.

There are Jack and Macdonald generalization of interpolation
polynomials, of types A and BC.
We prove the positivity and the monotonicity for binomial coefficients
associated to these interpolation polynomials (Theorems B and C).
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Application

Sλ(x + 1) =
∑
ν

(
λ

ν

)
Sν(x)

Pλ(x + 1) =
∑
ν

(
λ

ν

)
Pν(x)

Theorem (C–Sahi, Theorem F)
λ contains µ if and only if Sλ(x + 1)− Sµ(x + 1) is Schur positive, if
and only if Pλ(x + 1)− Pµ(x + 1) is Jack positive.

Theorem (Cuttler–Greene–Skandera ’11, Sra ’16)
Let |λ| = |µ|. Then λ majorizes (=dominates) µ if and only if

Sλ(x)− Sµ(x) ⩾ 0, ∀x ∈ [0,∞)n.

Theorem (Khare–Tao ’18)
λ weakly majorizes µ if and only if

Sλ(x + 1)− Sµ(x + 1) ⩾ 0, ∀x ∈ [0,∞)n.

CS + CGSS =⇒ KT
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