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The classical case

We have the classical Newton’s binomial theorem.

For non-negative integers m,n, and a variable ,

z+1)"=)" <Z)q:m
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In fact, n could be any real number, and z is a real number in a
neighborhood of 0.
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Question

How to generalize this to symmetric polynomials, that is, multivariate
polynomials whose variables are symmetric?




A partition is a sequence A = (A1,...,\,) € Z™, such that
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irreducible characters of the symmetric groups.

e For combinatorics, sy(z) = 3 ,2"* (T is the generating function of
Young tableaux.



The binomial formula for Schur

Let 1= (21,...,7y) and 1 = (1¥) = (1,...,1), and
Sx(z) = sx(x)/sa(1) is the normalized Schur.
Okounkov and Olshanski prove the following:
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The binomial formula for Schur

r=mn

T=A

These Sy, are called interpolation Schur (also known as shifted Schur,
factorial Schur).

2(x—1)---(x— m+ 1) is inhomo. of degree m, top deg part = 2™
S, is inhomo. of degree deg(S,) = |u/, top deg part = multiple of S/L
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Vanishing, positivity, monotonicity and our work

Define a partial order on partitions: A 2 p if A; > pu; for each 3.

11



Vanishing, positivity, monotonicity and our work

Define a partial order on partitions: A 2 p if A; > pu; for each 3.

A
° (n) = 0 unless n > m; ( )zOunless)\Qu.
m 1

19



Vanishing, positivity, monotonicity and our work

Define a partial order on partitions: A 2 p if A; > pu; for each 3.

A
° (n) = 0 unless n > m; ( )zOunleSS)\Qu.
m 1

. (n> > 0 when n > my; (A)>Owhen/\2,u.
m H

13



Vanishing, positivity, monotonicity and our work

Define a partial order on partitions: A 2 p if A; > pu; for each 3.

A
° (n) = 0 unless n > m; ( )zOunless)\Qu.
m 1

. (n> > 0 when n > my; (A)>Owhen/\2,u.
m H

! !
° (n> > (n) when n > n/; <A> > ()\> when A D \.
m m 1 [

14



Vanishing, positivity, monotonicity and our work

Define a partial order on partitions: A 2 p if A; > pu; for each 3.

A
° (n) = 0 unless n > m; ( )zOunless)\Qu.
m 1

. (n> > 0 when n > my; (A)>Owhen/\2,u.
m H

/ /
o(n>><n)whenn> n'; <A> (/\>when)\3)\'.
m m 1 [

The vanishing and positivity are known. We prove the monotonicity.
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15



Vanishing, positivity, monotonicity and our work

Define a partial order on partitions: A 2 p if A; > pu; for each 3.

A
° (n) = 0 unless n > m; ( )zOunless)\Qu.
m 1

. (n> > 0 when n > my; (A)>Owhen/\2,u.
m I

/ /
o<n>><n)whenn> n'; <A> (/\>when)\3)\’.
m m 1 [

The vanishing and positivity are known. We prove the monotonicity.

WV

There are Jack and Macdonald generalization of interpolation
polynomials, of types A and BC.
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The vanishing and positivity are known. We prove the monotonicity.
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There are Jack and Macdonald generalization of interpolation
polynomials, of types A and BC.

We prove the positivity and the monotonicity for binomial coefficients
associated to these interpolation polynomials (Theorems B and C).
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Application

Theorem (C-Sahi, Theorem F)

X contains p if and only if Sx(z+1) — S, (x+ 1) is Schur positive, if
and only if Px(z+1) — P,(z+ 1) is Jack positive.
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