Binomial formulas for symmetric polynomials

Hong Chen hc813@math.rutgers.edu

Rutgers

April 30, 2024 Research Bonanza

<ロト <問ト <注ト <注ト = 1

Joint with my advisor Prof. Siddhartha Sahi. arXiv:2403.02490

We have the classical Newton's binomial theorem.

Theorem

For non-negative integers m, n, and a variable x,

$$(x+1)^n = \sum_m \binom{n}{m} x^m$$

In fact, n could be any real number, and x is a real number in a neighborhood of 0.

$\operatorname{Question}$

How to generalize this to symmetric polynomials, that is, multivariate polynomials whose variables are symmetric?

We have the classical Newton's binomial theorem.

Theorem

For non-negative integers m, n, and a variable x,

$$(x+1)^n = \sum_m \binom{n}{m} x^m$$

In fact, n could be any real number, and x is a real number in a neighborhood of 0.

Question

How to generalize this to symmetric polynomials, that is, multivariate polynomials whose variables are symmetric?

 $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0.$

Many (any) interesting bases of the ring of symmetric polynomials are indexed by partitions, to name a few, the monomial m_{λ} , the power-sum p_{λ} , the elementary e_{λ} , the complete h_{λ} .

The most important and interesting are perhaps Schur polynomials s_{λ} . • For rep theory, Schur polynomials correspond bijectively to all irreducible characters of the symmetric groups. • For combinatorics, $s_{\lambda}(x) = \sum_{x} x^{\text{wt}(T)}$ is the generating function of

Young tableaux.

 $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0.$

Many (any) interesting bases of the ring of symmetric polynomials are indexed by partitions, to name a few, the monomial m_{λ} , the power-sum p_{λ} , the elementary e_{λ} , the complete h_{λ} .

The most important and interesting are perhaps Schur polynomials s_{λ} . • For rep theory, Schur polynomials correspond bijectively to all irreducible characters of the symmetric groups. • For combinatorics, $s_{\lambda}(x) = \sum_{n} x^{\text{wt}(T)}$ is the generating function of

• For combinatorics, $s_{\lambda}(x) = \sum_{T} x^{m(x)}$ is the generating function of Young tableaux.

$$\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0.$$

Many (any) interesting bases of the ring of symmetric polynomials are indexed by partitions, to name a few, the monomial m_{λ} , the power-sum p_{λ} , the elementary e_{λ} , the complete h_{λ} .

The most important and interesting are perhaps Schur polynomials s_{λ} . • For rep theory, Schur polynomials correspond bijectively to all irreducible characters of the symmetric groups. • For combinatorics, $s_{\lambda}(x) = \sum_{T} x^{\operatorname{wt}(T)}$ is the generating function of Young tableaux

6

 $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0.$

Many (any) interesting bases of the ring of symmetric polynomials are indexed by partitions, to name a few, the monomial m_{λ} , the power-sum p_{λ} , the elementary e_{λ} , the complete h_{λ} .

The most important and interesting are perhaps Schur polynomials s_{λ} . • For rep theory, Schur polynomials correspond bijectively to all irreducible characters of the symmetric groups.

• For combinatorics, $s_{\lambda}(x) = \sum_{T} x^{\operatorname{wt}(T)}$ is the generating function of Young tableaux.

$$\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant 0.$$

Many (any) interesting bases of the ring of symmetric polynomials are indexed by partitions, to name a few, the monomial m_{λ} , the power-sum p_{λ} , the elementary e_{λ} , the complete h_{λ} .

The most important and interesting are perhaps Schur polynomials s_{λ} . • For rep theory, Schur polynomials correspond bijectively to all irreducible characters of the symmetric groups.

• For combinatorics, $s_{\lambda}(x) = \sum_{T} x^{\operatorname{wt}(T)}$ is the generating function of Young tableaux.

The binomial formula for Schur

Let $x = (x_1, \ldots, x_N)$ and $\mathbf{1} = (1^N) = (1, \ldots, 1)$, and $S_{\lambda}(x) = s_{\lambda}(x)/s_{\lambda}(\mathbf{1})$ is the normalized Schur. Okounkov and Olshanski prove the following:

$$(x+1)^n = \sum_m \binom{n}{m} x^m$$
$$S_\lambda(x+1) = \sum_\mu \binom{\lambda}{\mu} S_\mu(x)$$

$$\binom{n}{m} = \frac{x(x-1)\cdots(x-m+1)}{m!}\Big|_{x=n}$$
$$\binom{\lambda}{\mu} = S^*_{\mu}(x)\Big|_{x=\lambda}$$

These S^*_{μ} are called interpolation Schur (also known as shifted Schur, factorial Schur).

 $x(x-1)\cdots(x-m+1)$ is inhomo. of degree m, top deg part $= x^m$. S^*_{μ} is inhomo. of degree deg $(S_{\mu}) = \frac{1}{2}u|$, top deg part = multiple of S_{μ} .

The binomial formula for Schur

$$(x+1)^n = \sum_m \binom{n}{m} x^m$$
$$S_\lambda(x+1) = \sum_\mu \binom{\lambda}{\mu} S_\mu(x)$$

$$\binom{n}{m} = \frac{x(x-1)\cdots(x-m+1)}{m!} \bigg|_{x=n}$$
$$\binom{\lambda}{\mu} = S^*_{\mu}(x) \bigg|_{x=\lambda}$$

These S^*_{μ} are called interpolation Schur (also known as shifted Schur, factorial Schur).

 $x(x-1)\cdots(x-m+1)$ is inhomo. of degree m, top deg part $= x^m$. S^*_{μ} is inhomo. of degree deg $(S_{\mu}) = |\mu|$, top deg part = multiple of S_{μ} .

Define a partial order on partitions: $\lambda \supseteq \mu$ if $\lambda_i \ge \mu_i$ for each *i*.

•
$$\binom{n}{m} = 0$$
 unless $n \ge m$; $\binom{\lambda}{\mu} = 0$ unless $\lambda \supseteq \mu$.
• $\binom{n}{m} > 0$ when $n \ge m$; $\binom{\lambda}{\mu} > 0$ when $\lambda \supseteq \mu$.
• $\binom{n}{m} \ge \binom{n'}{m}$ when $n \ge n'$; $\binom{\lambda}{\mu} \ge \binom{\lambda'}{\mu}$ when $\lambda \supseteq \lambda'$

The vanishing and positivity are known. We prove the monotonicity.

There are Jack and Macdonald generalization of interpolation polynomials, of types A and BC.

We prove the positivity and the monotonicity for binomial coefficients associated to these interpolation polynomials (Theorems B and C).

11

Define a partial order on partitions: $\lambda \supseteq \mu$ if $\lambda_i \ge \mu_i$ for each *i*.

•
$$\binom{n}{m} = 0$$
 unless $n \ge m$; $\binom{\lambda}{\mu} = 0$ unless $\lambda \supseteq \mu$.

•
$$\binom{n}{m} > 0$$
 when $n \ge m$; $\binom{\lambda}{\mu} > 0$ when $\lambda \supseteq \mu$.

•
$$\binom{n}{m} \ge \binom{n'}{m}$$
 when $n \ge n'$; $\binom{\lambda}{\mu} \ge \binom{\lambda'}{\mu}$ when $\lambda \supseteq \lambda'$.

The vanishing and positivity are known. We prove the monotonicity.

There are Jack and Macdonald generalization of interpolation polynomials, of types A and BC.

We prove the positivity and the monotonicity for binomial coefficients associated to these interpolation polynomials (Theorems B and C).

Define a partial order on partitions: $\lambda \supseteq \mu$ if $\lambda_i \ge \mu_i$ for each *i*.

•
$$\binom{n}{m} = 0$$
 unless $n \ge m$; $\binom{\lambda}{\mu} = 0$ unless $\lambda \supseteq \mu$.

•
$$\binom{n}{m} > 0$$
 when $n \ge m$; $\binom{\lambda}{\mu} > 0$ when $\lambda \supseteq \mu$.

•
$$\binom{n}{m} \ge \binom{n'}{m}$$
 when $n \ge n'$; $\binom{\lambda}{\mu} \ge \binom{\lambda'}{\mu}$ when $\lambda \supseteq \lambda'$.

The vanishing and positivity are known. We prove the monotonicity.

There are Jack and Macdonald generalization of interpolation polynomials, of types A and BC.

We prove the positivity and the monotonicity for binomial coefficients associated to these interpolation polynomials (Theorems B and C).

Define a partial order on partitions: $\lambda \supseteq \mu$ if $\lambda_i \ge \mu_i$ for each *i*.

•
$$\binom{n}{m} = 0$$
 unless $n \ge m$; $\binom{\lambda}{\mu} = 0$ unless $\lambda \supseteq \mu$.
• $\binom{n}{m} > 0$ when $n \ge m$; $\binom{\lambda}{\mu} > 0$ when $\lambda \supseteq \mu$.
• $\binom{n}{m} \ge \binom{n'}{m}$ when $n \ge n'$; $\binom{\lambda}{\mu} \ge \binom{\lambda'}{\mu}$ when $\lambda \supseteq \lambda'$.

The vanishing and positivity are known. We prove the monotonicity.

There are Jack and Macdonald generalization of interpolation polynomials, of types A and BC.

We prove the positivity and the monotonicity for binomial coefficients associated to these interpolation polynomials (Theorems B and C).

14

Define a partial order on partitions: $\lambda \supseteq \mu$ if $\lambda_i \ge \mu_i$ for each *i*.

•
$$\binom{n}{m} = 0$$
 unless $n \ge m$; $\binom{\lambda}{\mu} = 0$ unless $\lambda \supseteq \mu$.

•
$$\binom{n}{m} > 0$$
 when $n \ge m$; $\binom{\lambda}{\mu} > 0$ when $\lambda \supseteq \mu$.

•
$$\binom{n}{m} \ge \binom{n'}{m}$$
 when $n \ge n'$; $\binom{\lambda}{\mu} \ge \binom{\lambda'}{\mu}$ when $\lambda \supseteq \lambda'$.

The vanishing and positivity are known. We prove the monotonicity.

There are Jack and Macdonald generalization of interpolation polynomials, of types A and BC.

We prove the positivity and the monotonicity for binomial coefficients associated to these interpolation polynomials (Theorems B and C).

Define a partial order on partitions: $\lambda \supseteq \mu$ if $\lambda_i \ge \mu_i$ for each *i*.

•
$$\binom{n}{m} = 0$$
 unless $n \ge m$; $\binom{\lambda}{\mu} = 0$ unless $\lambda \supseteq \mu$.

•
$$\binom{n}{m} > 0$$
 when $n \ge m$; $\binom{\lambda}{\mu} > 0$ when $\lambda \supseteq \mu$.

•
$$\binom{n}{m} \ge \binom{n'}{m}$$
 when $n \ge n'$; $\binom{\lambda}{\mu} \ge \binom{\lambda'}{\mu}$ when $\lambda \supseteq \lambda'$.

The vanishing and positivity are known. We prove the monotonicity.

There are Jack and Macdonald generalization of interpolation polynomials, of types A and BC.

We prove the positivity and the monotonicity for binomial coefficients associated to these interpolation polynomials (Theorems B and C).

Define a partial order on partitions: $\lambda \supseteq \mu$ if $\lambda_i \ge \mu_i$ for each *i*.

•
$$\binom{n}{m} = 0$$
 unless $n \ge m$; $\binom{\lambda}{\mu} = 0$ unless $\lambda \supseteq \mu$.

•
$$\binom{n}{m} > 0$$
 when $n \ge m$; $\binom{\lambda}{\mu} > 0$ when $\lambda \supseteq \mu$.

•
$$\binom{n}{m} \ge \binom{n'}{m}$$
 when $n \ge n'$; $\binom{\lambda}{\mu} \ge \binom{\lambda'}{\mu}$ when $\lambda \supseteq \lambda'$.

The vanishing and positivity are known. We prove the monotonicity.

There are Jack and Macdonald generalization of interpolation polynomials, of types A and BC.

We prove the positivity and the monotonicity for binomial coefficients associated to these interpolation polynomials (Theorems B and C).

Application

$$S_{\lambda}(x+1) = \sum_{\nu} {\binom{\lambda}{\nu}} S_{\nu}(x)$$
$$P_{\lambda}(x+1) = \sum_{\nu} {\binom{\lambda}{\nu}} P_{\nu}(x)$$

Theorem (C–Sahi, Theorem F)

 λ contains μ if and only if $S_{\lambda}(x+1) - S_{\mu}(x+1)$ is Schur positive, if and only if $P_{\lambda}(x+1) - P_{\mu}(x+1)$ is Jack positive.

Theorem (Cuttler–Greene–Skandera '11, Sra '16)

Let $|\lambda| = |\mu|$. Then λ majorizes (=dominates) μ if and only if

 $S_{\lambda}(x) - S_{\mu}(x) \ge 0, \quad \forall x \in [0, \infty)^n.$

Theorem (Khare–Tao '18)

 λ weakly majorizes μ if and only if

Theorem (C–Sahi, Theorem F)

 λ contains μ if and only if $S_{\lambda}(x+1) - S_{\mu}(x+1)$ is Schur positive, if and only if $P_{\lambda}(x+1) - P_{\mu}(x+1)$ is Jack positive.

Theorem (Cuttler–Greene–Skandera '11, Sra '16)

Let $|\lambda| = |\mu|$. Then λ majorizes (=dominates) μ if and only if

$$S_{\lambda}(x) - S_{\mu}(x) \ge 0, \quad \forall x \in [0, \infty)^n.$$

Theorem (Khare–Tao '18)

 λ weakly majorizes μ if and only if

$$S_{\lambda}(x+1) - S_{\mu}(x+1) \ge 0, \quad \forall x \in [0,\infty)^n.$$

 $CS + CGSS \implies KT$

Theorem (C–Sahi, Theorem F)

 λ contains μ if and only if $S_{\lambda}(x+1) - S_{\mu}(x+1)$ is Schur positive, if and only if $P_{\lambda}(x+1) - P_{\mu}(x+1)$ is Jack positive.

Theorem (Cuttler–Greene–Skandera '11, Sra '16)

Let $|\lambda| = |\mu|$. Then λ majorizes (=dominates) μ if and only if

$$S_{\lambda}(x) - S_{\mu}(x) \ge 0, \quad \forall x \in [0, \infty)^n.$$

Theorem (Khare–Tao '18)

 λ weakly majorizes μ if and only if

$$S_{\lambda}(x+1) - S_{\mu}(x+1) \ge 0, \quad \forall x \in [0,\infty)^n.$$

 $CS + CGSS \implies KT$