Problem statement Suppose \(f \) is defined by \(f(x) = 3e^{\cos x} \). Maple produced graphs of \(f \) and its first four derivatives on the interval \([2, 7]\) (be careful when examining the derivative graphs – look carefully at the vertical scales!). The graph of \(f \) is to the right, and the graphs of the first four derivatives of \(f \) are on the back of this page. You should assume that the graphs are correct for this problem.

Suppose \(I \) is the value of \(\int_{2}^{7} f(x) \, dx \).

a) Use the graph of \(f \) alone to estimate \(I \).

b) Use the information in the graphs to tell how many subdivisions \(N \) are needed so that the Trapezoid Rule approximation \(T_N \) will approximate \(I \) with error \(< 10^{-5} \).

c) Use the information in the graphs to tell how many subdivisions \(N \) are needed so that the Simpson’s Rule approximation \(S_N \) will approximate \(I \) with error \(< 10^{-5} \).