
Math 403:01 February 10, 2010Homework assignment #4

Due at the beginning of class, Monday, March 22, 2010

Please read sections 2.2, 2.3, and 2.4 of the textbook. This is the core of the course, and
knowing this material is the gateway to success in the majority of what follows.

Solve these textbook problems (4 points each):

2.2 (page 103): 11, 18

2.3 (page 116): 4, 6, 13, 14

A. (10 points) For what simple closed curves γ is

∫

γ

dz

z2 + z + 1
= 0?

Hint Partial fractions, linearity, thought.

From Basic Complex Analysis by Jerrold Marsden

B. (10 points) In this problem, the curve C is the boundary of the circle of radius 1 centered
at 0 oriented counterclockwise.

a) Evaluate

∫

C

zndz (here n is an integer: positive, negative, or 0).

Remark Many, many of these are 0!

b) Evaluate

∫

C

(

z +
1

z

)n
dz

z
(here n is a positive integer).

Hint Expand, compute.

c) Show that

∫

2π

0

sin2n θ dθ =

∫

2π

0

cos2n θ dθ = 2π ·

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
.

Remark You only need to check one of these, since the shapes are the same. Just “encode”
an integral in a complex fashion. The “encode” is a slight joke since the integrals are
attributed to John Wallis (1616–1703), a mathematician who was also a cryptographer for
various English government organizations. The values of the integrals can be used to prove
the Wallis product expansion for π (not part of the homework assignment!):
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From Classical Complex Analysis by Liang-shin Hahn and Bernard Epstein

The other side has an interesting quote from one of the “founders”.



What’s below is copied from Reinhold Remmert’s wonderful book, Theory of Complex

Functions. The book discusses both the history and the methods of complex analysis. It
notes the errors committed and the variant approaches which were tried. Remmert writes
that, in spite of this letter, the first publication of what is now recognized as Cauchy’s
Theorem and related results was done by Cauchy (who was trying to understand how to
describe incompressible fluids mathematically!). This was around the same time as Green’s
important results. See how much you can recognize in this translation of Gauss’s remarks.

Gauss wrote to Bessel on December 18, 1811: “What should we make of
∫

ϕx · dx

for x = a+ bi? Obviously, if we’re to proceed from clear concepts, we have to assume
that x passes, via infinitely small increments (each of the form α+iβ), from that value
at which the integral is supposed to be 0, to x = a + bi and from that then all the
ϕx ·dx are summed up. In this way the meaning is made precise. But the progression
of the x values can take place in infinitely many ways: Just as we think of the realm
of all real magnitudes as an infinite straight line, so we can envision the realm of
all magnitudes, real and imaginary, as an infinite plane wherein every point which is
determined by an abscissa a and an ordinate b represents as well the magnitude a+bi.
The continuous passage from one value of x to another a+bi accordingly occurs along
a curve and is consequently possible in infinitely many ways. But I maintain that the
integral

∫

ϕx · dx computed via two such passages always gets the same value as long
as ϕx = ∞ never occurs in the region of the plane enclosed by the curves describing
these two passages. This is a very beautiful theorem whose not-so-difficult proof I will
give when an appropriate occasion comes up. It is closely related to other beautiful
truths having to do with developing functions in series. The passage from point to
point can always be carried out without ever touching one where ϕx = ∞. However,
I demand that these points be avoided lest the original basic conception of

∫

ϕx · dx

lose its clarity and lead to contradictions. Moreover, it is also clear from this how
a function generated by

∫

ϕx · dx could have several values for the same values of
x, depending on whether a point where ϕx = ∞ is gone around not at all, once, or
several times. If, for example, we define log x via

∫

1

x
dx starting at x = 1, then arrive

at log x having gone around the point x = 0 one or more times or not at all, every
circuit adds the constant +2πi or −2πi; thus the fact that every number has multiple
logarithms becomes quite clear.”


