Quiz #6 for Math 250:1 & 5

3/23/2011

Name ____________________________ Section (please circle one) 1 5

1. (4) In this problem, S is a subspace of \mathbb{R}^n which is **not** \{0\}.

 a) Define *basis* of S.

 Answer A basis of S is a linearly independent set of vectors in S which also spans S.

 b) Define *dimension* of S.

 Answer The dimension of S is the number of vectors in a basis of S.

2. (3) Suppose S is the subspace of \mathbb{R}^4 that is the span of \[
\begin{bmatrix}
1 \\
0 \\
1 \\
0 \\
\end{bmatrix}, \begin{bmatrix}
1 \\
2 \\
0 \\
0 \\
\end{bmatrix}, \begin{bmatrix}
2 \\
0 \\
2 \\
0 \\
\end{bmatrix} \]. Find the dimension of S and give a basis of S. You do **not** need to justify your answers.

 Answer If v_1, v_2, and v_3 are the vectors given, then $v_3 = 2v_1$ so we can discard v_3 without changing the span. Notice that v_1 and v_2 are linearly independent (consider the second and third coordinates, for example). Therefore S has dimension 2 and a basis of S is given by v_1 and v_2.

3. (3) Suppose S is a subspace of \mathbb{R}^{500} which contains a set of 4 linearly independent vectors and which is spanned by 6 of its vectors. What are the possible values of the dimension of S? You do **not** need to justify your answer.

 Answer Any linearly independent set can be increased to a basis, and any spanning set can be “shrunk” to form a basis. Therefore a basis of S will have at least 4 vectors and at most 6 vectors. The dimension of S must be 4, 5, or 6.