Quiz #4 for Math 250:1 & 5 2/23/2011

Name ___________________________ Section (please circle one) 1 5

1. (2) Suppose that \(A \) is an \(m \times n \) matrix. Define the rank of \(A \) and the nullity of \(A \).

 Suggestion Use complete English sentences. You might want your first sentence to begin
 with the phrase: “If \(R \) is the reduced row echelon form of \(A \), then the ...”.

 Suppose \(R \) is the reduced row echelon form of \(A \), then the rank of \(A \) is the number of
 pivots in \(R \) and the nullity of \(A \) is \(n - \) the rank of \(A \).

 Simple examples are better than complicated examples!

2. (2) Give an example of a matrix which has rank = 3 and nullity = 2. You need not verify your example!

 Answer
 \[
 \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0
 \end{bmatrix}
 \]

3. (2) Give two \(2 \times 2 \) matrices \(A \) and \(B \) so that the rank of \(A \) is 1, the rank of \(B \) is 1, and
 the rank of \(A + B \) is 2. You need not verify your example!

 Answer \(A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \) and \(B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \) so that \(A + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \).

4. (2) Give two \(2 \times 2 \) matrices \(A \) and \(B \) so that the rank of \(A \) is 1, the rank of \(B \) is 1, and
 the rank of \(A + B \) is 1. You need not verify your example!

 Answer \(A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \) so that \(A + B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \).

5. (2) Give two \(2 \times 2 \) matrices \(A \) and \(B \) so that the rank of \(A \) is 1, the rank of \(B \) is 1, and
 the rank of \(A + B \) is 0. You need not verify your example!

 Answer \(A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \) and \(B = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \) so that \(A + B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \).