(8) 1. Calculate the derivative of y with respect to x if sin(x + y) = x + cos(y).

Section 3.8, exercise 23

(10) 2. a) Calculate the derivative if  $y = \arctan\left(\frac{1+t}{1-t}\right)$ .

Section 3.9, exercise 31

b) Find an equation of the tangent line at the point indicated:  $f(x) = \ln(x^2)$ , x = 4.

Section 3.10, exercise 30

(12) 3. A road perpendicular to a highway leads to a farm-house located 1 mile away. An automobile travels past the farmhouse at a speed of 60 mph. How fast is the distance between the automobile and the farmhouse increasing when the automobile is 3 miles past the intersection of the farmhouse and the road?



Section 3.11, exercise 9

(6) 4. The cube root of 27 is 3. How much larger is the cube root of 27.2? Estimate using the Linear Approximation.

Section 4.1, exercise 25

(8) 5. Let  $x_1$ ,  $x_2$  be the estimates obtained by applying Newton's Method with  $x_0 = 1$  to the function graphed in the accompanying figure. Estimate the numerical values of  $x_1$  and  $x_2$  and draw the tangent lines used to obtain them.



(10) 6. Find the maximum and minimum values of the function on the given interval.

$$y = x - \frac{4x}{x+1}$$
,  $[0,3]$ 

(9) 7. Find the critical points and the intervals on which the function is increasing or decreasing, and apply the First Derivative Test to each critical point.

$$y = \cos \theta + \sin \theta$$
,  $[0, 2\pi]$ 

Section 4.3, exercise 42

(11) 8. Determine the intervals on which the function is concave up or down and find the points of inflection.

$$y = (x^2 - 3)e^x$$

Section 4.4, exercise 17

(4) 9. Sketch an arc where f' and f'' have y the sign combination ++ on axes (A). Do the same for -+ on axes (B).



Section 4.4, preliminary question 1

(12) 10. A landscape architect wishes to enclose a rectangular garden on one side by a brick wall costing \$30/ft and on the other sides by a metal fence costing \$10/ft. If the area of the garden is 1,000 ft<sup>2</sup>, find the dimensions of the garden that minimizes the cost.

Section 4.6, exercise 11

(10) 11. Evaluate the limit. Be sure, as the cover page states, to **Show your work** since **An** answer alone may not receive full credit. Explain why any special method you use is applicable.

$$\lim_{x \to 4} \frac{1}{\sqrt{x} - 2} - \frac{4}{x - 4}$$

## Second Exam for Math 153

November 19, 2009

| NAME |       |    |  |
|------|-------|----|--|
|      |       |    |  |
|      |       |    |  |
|      | SECTI | ON |  |

Do all problems, in any order.

Show your work. An answer alone may not receive full credit.

No texts, notes, or calculators may be used on this exam.

| Problem<br>Number | Possible<br>Points | $\begin{array}{c} { m Points} \\ { m Earned:} \end{array}$ |
|-------------------|--------------------|------------------------------------------------------------|
| 1                 | 8                  |                                                            |
| 2                 | 10                 |                                                            |
| 3                 | 12                 |                                                            |
| 4                 | 6                  |                                                            |
| 5                 | 8                  |                                                            |
| 6                 | 10                 |                                                            |
| 7                 | 9                  |                                                            |
| 8                 | 11                 |                                                            |
| 9                 | 4                  |                                                            |
| 10                | 12                 |                                                            |
| 11                | 10                 |                                                            |
| Total Poir        |                    |                                                            |