Function	Domain	Range	Graph
x^2	all x	$y \ge 0$	
x^3	all x	all y	
\sqrt{x}	$x \ge 0$	$y \ge 0$	
x	all x	$y \ge 0$	
1/x	$x \neq 0$	$y \neq 0$	
$\sin x$		$-1 \le y \le 1$	
$\cos x$	all x	$-1 \le y \le 1$	
$\tan x x_{\bar{7}}$	≠ (odd int	$\frac{\pi}{2}$ all y	
$\ln x$	x > 0	all y	
e^{x}	all x	y > 0	
$\arctan x$	all x	$-\frac{\pi}{2} < y < \frac{\pi}{2}$	
$\arcsin x$ -	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$	

Function Derivative C0 x^n nx^{n-1} e^x e^x 1/x $\ln x$ $\cos x$ $\sin x$ $-\sin x \\ (\sec x)^2 \\ \frac{1}{1+x^2} \\ \frac{1}{1+x^2}$ $\cos x$ $\tan x$ $\arctan x$ $\arcsin x$

Function	Derivative
Kf(x)	Kf'(x)
f(x)+g(x)	f'(x)+g'(x)
$f(x) \cdot g(x)$	$f'(x) \cdot g(x) + f(x) \cdot g'(x)$
f(x)	f'(x)g(x) - g'(x)f(x)
$\overline{g(x)}$	$\overline{g(x)^2}$
f(g(x))	$f'(g(x)) \cdot g'(x)$

Logarithmic properties

$$\ln(a \cdot b) = \ln a + \ln b \ \ln(a^{b}) = b \ln(a)$$

$$\ln(a/b) = \ln(a) - \ln(b) \ \ln(\frac{1}{b}) = -\ln(b)$$

$$\ln(e^{a}) = a \ \ln(1) = 0 \ \ln(e) = 1$$

$$a^{b+c} = a^b \cdot a^c \quad a^{-b} = 1/a^b$$

$$(a^b)^c = a^{bc} \quad e \approx 2.718$$

$$a^0 = 1 \quad e^{\ln a} = a \text{ if } a > 0$$

Triangle thin	ngs 360° ($degrees) = 2\pi radians$ Pythagoras
		${f Pythagoras}$
OPP	$\cos \theta = \frac{ADJ}{HYP}$	$(ADJ)^2 + (OPP)^2 = (HYP)^2$
$\angle \theta$ ADJ	$\tan \theta = \frac{OPP}{ADJ}$	$(\sin\theta)^2 + (\cos\theta)^2 = 1$

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	1	0	NONE
π	0	-1	0

More formulas

The **roots** of $ax^2+bx+c=0$ are $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$. Distance from (a,b) to (c,d): $\sqrt{(a-c)^2+(b-d)^2}$ Circle center (h,k) & radius r: $(x-h)^2+(y-k)^2=r^2$ Line y=mx+b and $m=\frac{y_2-y_1}{x_2-x_1}$ (slope of the line) Addition $\sin(A+B)=\sin A\cos B+\cos A\sin B$ formulas $\cos(A+B)=\cos A\cos B-\sin A\sin B$ Periodicity $\sin(x+2\pi)=\sin x$ and $\cos(x+2\pi)=\cos x$ and $\tan(x+\pi)=\tan x$ for all x

Area and Volume Formulas

Triangle $A = \frac{1}{2}$ Base-height Rectangle A = Length-widthCircle $A = \pi$ radius² Circle $C = 2\pi$ radius Box V = Length-width-heightCylinder $V = \pi$ radius²-height Sphere $A = 4\pi$ radius² Sphere $V = \frac{4}{3}\pi$ radius³

w in f's domain is a **critical number** if **either** f'(w) = 0: could look like

The First Derivative Test A critical number w is a relative max if f'(left of w) > 0 & f'(right of w) < 0; relative min if f'(left of w) < 0 & f'(right of w) > 0. Important No other critical numbers should be between w and where the sign of f' is checked! If both are positive or both are negative, then w is an

If both are positive or both are negative, then w is an **inflection point** of f.

The Second Derivative Test A critical number w is a relative min if f''(w) > 0 & relative max if f''(w) < 0.

Finding max/min on a closed interval

If f is continuous on $a \le x \le b$ then f's \max/\min values must occur either at a or at b or at a critical number inside the interval.

f has an **inflection point** at w if w is in f's domain and if the concavity of f's graph is different on either side of w:

f is **continuous** at w if $\lim_{x\to w} f(x)$ exists and equals f(w) or check $\lim_{x\to w^+} f(x)$ and $\lim_{x\to w^-} f(x)$ both exist and = f(w). f is **differentiable** at w if $\lim_{h\to 0} \frac{f(w+h)-f(w)}{h}$ exists. This is f'(w): the rate of change of f with respect to w or the slope of the tangent line to y=f(x) at x=w.

Implicit differentiation/related rates

Key point Differentiate a whole equation. Don't forget what's varying, chain rule, product rule, etc. **Example** If $xy^2 = \sin(x+y) + 3x$ then $\frac{d}{dx}$ the equation. Get $1 \cdot y^2 + x \cdot 2yy' = \cos(x+y)(1+y') + 3$. **Solve** for y'.

f defined in a < x < b has a **relative maximum** at w in the interval if $f(w) \ge f(x)$ for x's near w on both sides. f defined in a < x < b has a **relative minimum** at w in the interval if $f(w) \le f(x)$ for x's near w on both sides. Relative max and min must occur at critical numbers.

Differential or tangent line approximation

 $f(w+\Delta w) \approx f(w)+f'(w)\Delta w$. The graph's bending causes **error**: the true value is larger when the graph is concave up and smaller when the graph is concave down.

Intermediate Value Theorem If f is continuous in $a \le x \le b$, f's values include all numbers between f(a) and f(b): a continuous function's graph has no jumps. Mean Value Theorem If f is differentiable in $a \le x \le b$, there are some c's in the interval with $f'(c) = \frac{f(b) - f(a)}{b - a}$: some tangent lines of a differentiable function's graph must be parallel to any chord. Rolle's Theorem MVT with f(a) = f(b) = 0. Fund. Thm. of Calculus If F' = f then $\int_a^b f(x) \, dx = F(b) - F(a)$; $\frac{d}{dx} \int_a^x f = f(x)$.

f is **increasing** in a < x < b if $f(x_1) \le f(x_2)$ for any $x_1 \le x_2$ in the interval. If f'(x) > 0 always in a < x < b then f is increasing there.

f is **decreasing** in a < x < b if $f(x_1) \ge f(x_2)$ for any $x_1 \le x_2$ in the interval. If f'(x) < 0 always in a < x < b then f is decreasing there.

f is **concave up** if lines connecting the graph are above the graph: it bends up. If f''(x) > 0 always in a < x < b, f is concave up.

f is **concave down** if lines connecting the graph are below the graph: it bends down. If f''(x) < 0 always in a < x < b, f is concave down.

Function Antiderivative $\int f(x) dx$ f(x)Kf(x) $K \int f(x) dx$ $f(x)+g(x) \quad \int f(x) dx + \int g(x) dx$ $x^{n} \quad \frac{1}{n+1}x^{n+1} + C, \ n \neq -1$ $\ln x + C \ (x > 0)$ $e^x + C$ $\sin x$ $-\cos x + C$ $\sin x + C$ $\cos x$ $\ln(\sec x) + C$ $\tan x$ $\int f(u) du$ $\int f(g(x)) g'(x) dx$ when u = q(x) (Substitution)

Sample points
$$\{c_1, c_2, c_3\}$$
 Partition $\{a = x_0 \le x_1 \le x_2 \le x_3 = b\}$ Riemann sum $f(c_1)(x_1 - x_0) + f(c_2)(x_2 - x_1) + f(c_3)(x_3 - x_2)$

With many sample points and small differences in the partition, the sum will closely approximate the **definite integral** $\int_a^b f(x) \, dx$.

If
$$\lim_{x\to a^{(\pm)}} f(x) = \pm \infty$$
 then $x = a$ is a **vertical asymptote** of $y = f(x)$ and if $\lim_{x\to \pm \infty} f(x) = b$ then $y = b$ is a **horizontal asymptote** of $y = f(x)$.

If
$$g(x) \le f(x)$$
 in $a \le x \le b$, $\int_a^b g(x) dx \le \int_a^b f(x) dx$.

$$\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx$$

$$\int_a^b f(x) dx$$
 is **signed area**: area I – area II + area III.

