Solutions for 151 Televised Final Review

1) Find

$$
\lim _{x \rightarrow 0} x^{x}
$$

This is an indeterminate form because it is of the form 0^{1}. We let $y=x^{x}$, so $\ln y=x \ln x$.

$$
\begin{gathered}
\lim _{x \rightarrow 0} \ln y= \\
\lim _{x \rightarrow 0} \frac{\ln x}{1 / x}=\lim _{x \rightarrow 0} \frac{1 / x}{-1 / x^{2}}=\lim _{x \rightarrow 0}-x=0 \\
\lim _{x \rightarrow 0} x^{x}=\lim _{x \rightarrow 0} e^{\ln y}=e^{0}=1
\end{gathered}
$$

We can apply L'Hopital's rule because the limit was of the form infinity over infinity.
2) Find $f^{\prime}(x)$ where

$$
f(x)=(\cos x)^{x}
$$

We let $y=(\cos x)^{x}$. Then $\ln y=x(\ln (\cos x))$. We take the derivative of both sides to find:

$$
\frac{1}{y} y^{\prime}=x \frac{1}{\cos x}(-\sin x)+\ln (\cos x)
$$

Multiplying both sides by $y=(\cos x)^{x}$, we have

$$
y^{\prime}=(\cos x)^{x}(-x \tan x+\ln (\cos x))
$$

3) Approximate $(8.1)^{1 / 3}$ using linearization.

We let $f(x)=x^{1 / 3}$. We note that 8.1 is near 8 , so we let $a=8$. Then $f(a)=8^{1 / 3}=2$, and $f^{\prime}(x)=(1 / 3) x^{-2 / 3}$, so $f^{\prime}(a)=1 / 12$. Then

$$
(8.1)^{1 / 3} \approx f(a)+f^{\prime}(a)(x-a)=2+\frac{1}{12}(8.1-8)=2+\frac{1}{12}(0.1)
$$

4) Find L_{4} and R_{4} for $f(x)=x^{2}$ on the interval $[1,3]$.

We have $\Delta x=(3-1) / 4=1 / 2$. Then
$L_{4}=\frac{1}{2}[f(1)+f(3 / 2)+f(2)+f(5 / 2)]=\frac{1}{2}\left[1+\frac{9}{4}+4+\frac{25}{4}\right]=\frac{1}{2}\left[5+\frac{17}{2}\right]=\frac{27}{4}$
$R_{4}=\frac{1}{2}[f(3 / 2)+f(2)+f(5 / 2)+f(3)] \frac{1}{2}\left[\frac{9}{4}+4+\frac{25}{4}+9\right]=\frac{1}{2}\left[13+\frac{17}{2}\right]=\frac{43}{4}$
5) Two circles have the same center. The inner circle has radius r which is increasing at $3 \mathrm{in} / \mathrm{s}$. The outer circle has radius R which is increasing at $2 \mathrm{in} / \mathrm{s}$. Suppose that A is the area of the region between the circles. When $r=7 \mathrm{in}$ and $R=10 i n$, what is A ? How fast is A changing? Is A increasing or decreasing?

The area of the outer circle is πR^{2} and the area of the inner circle is πr^{2}. Then $A=\pi R^{2}-\pi r^{2}=\pi\left(R^{2}-r^{2}\right)$. Then when $r=7$ and $R=10, A=$
$\pi\left(10^{2}-7^{2}\right)=51 \pi$. To find how fast A is changing, we take the derivative with respect to time.

$$
\frac{d A}{d t}=\pi\left(2 R \frac{d R}{d t}-2 r \frac{d r}{d t}\right)=\pi(2 \cdot 10 \cdot 2-2 \cdot 7 \cdot 3)=\pi(-2) i n^{2} / s
$$

Since $d A / d t$ is negative, A is decreasing.
6) Find $\frac{d y}{d x}$ if $y^{3}=3 x y+y^{2}+4 x^{3}$.

$$
\begin{gathered}
3 y^{2} \frac{d y}{d x}=3 x \frac{d y}{d x}+3 y+2 y \frac{d y}{d x}+12 x^{2} \\
\frac{d y}{d x}\left(3 y^{2}-3 x-2 y\right)=3 y+12 x^{2} \\
\frac{d y}{d x}=\frac{3 y+12 x^{2}}{3 y^{2}-3 x-2 y}
\end{gathered}
$$

7) Find $\frac{d y}{d x}$ if $y=\left(\ln \left(x^{2}\right)+2 x^{3}\right)^{1 / 3}$.

$$
\frac{d y}{d x}=\frac{1}{3}\left(\ln \left(x^{2}\right)+2 x^{3}\right)^{-2 / 3}\left(\frac{1}{x^{2}}(2 x)+6 x^{2}\right)=\frac{1}{3}\left(\ln \left(x^{2}\right)+2 x^{3}\right)^{-2 / 3}\left(\frac{2}{x}+6 x^{2}\right)
$$

8) Calculate

$$
\lim _{x \rightarrow 0} \frac{\sin x-x}{e^{x}-1}
$$

This is of the form $0 / 0$, so we can apply L'Hopital.

$$
\lim _{x \rightarrow 0} \frac{\sin x-x}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{\cos x-1}{e^{x}}=\frac{\cos 0-1}{e^{0}}=\frac{0}{1}=0
$$

9) Calculate the following limits:

$$
\begin{gathered}
\lim _{x \rightarrow 3} \frac{x^{2}+5 x+6}{x^{2}+2 x-3}, \lim _{x \rightarrow-3} \frac{x^{2}+5 x+6}{x^{2}+2 x-3}, \lim _{x \rightarrow \infty} \frac{x^{2}+5 x+6}{x^{2}+2 x-3} \\
\lim _{x \rightarrow 3} \frac{x^{2}+5 x+6}{x^{2}+2 x-3}=\frac{9+15+6}{9+6-3}=\frac{30}{12}=\frac{5}{2}
\end{gathered}
$$

The second limit is of the form $0 / 0$ so we can apply L'Hopital.

$$
\lim _{x \rightarrow-3} \frac{x^{2}+5 x+6}{x^{2}+2 x-3}=\lim _{x \rightarrow-3} \frac{2 x+5}{2 x+2}=\frac{-1}{-4}=\frac{1}{4}
$$

The third limit is of the form infinity over infinity. We can apply L'Hopital or we can use algebra. Algebraically,

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+5 x+6}{x^{2}+2 x-3}=\lim _{x \rightarrow \infty} \frac{1+5 / x+6 / x^{2}}{1+2 / x-3 / x^{2}}=1
$$

Using L'Hopital,

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+5 x+6}{x^{2}+2 x-3}=\lim _{x \rightarrow \infty} \frac{2 x+5}{2 x+2}=\lim _{x \rightarrow \infty} \frac{2}{2}=1
$$

10) Let $f(x)=\cos (3 x)+3 x^{2}-6 x+1$. Explain why there must be a root of $f(x)=0$ in $[-1,1]$.

First, we note that the function $f(x)$ is continuous on $[-1,1]$. Also, $f(-1)=$ $\cos (-3)+3+6+1=10+\cos (-3) \geq 9>0$ because $-1 \leq \cos x \leq 1$ for all x. Also, $f(1)=\cos (3)+3-6+1=-2+\cos (3) \leq-1<0$. Then, by the intermediate value theorem, there is c in the interval $[-1,1]$ such that $f(c)=0$.
11) Suppose that the function f is continuous on $[1,3]$ and differentiable on $(1,3)$. If $f(1)=9$ and $f^{\prime}(x) \geq 2$ for $1 \leq x \leq 3$, how small can $f(3)$ possibly be?

Since the function is continuous and differentiable, we can apply the mean value theorem. By the MVT, there is c in $(1,3)$ such that

$$
f^{\prime}(c)=\frac{f(3)-f(1)}{3-1}=\frac{f(3)-9}{2}
$$

. We also have $f^{\prime}(c) \geq 2$ by assumption, so $(f(3)-9) / 2 \geq 2$, so $f(3)-9 \geq 4$ and $f(3) \geq 13$.
12) Find the value of c that makes the function continuous.

$$
f(x)= \begin{cases}x^{2}-c & \text { for } x<5 \\ 4 x+2 c & \text { for } x \geq 5\end{cases}
$$

For the function to be continuous, we need

$$
\lim _{x \rightarrow 5^{+}} f(x)=f(5)=\lim _{x \rightarrow 5^{-}} f(x)
$$

We have

$$
\begin{gathered}
\lim _{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5^{+}} 4 x+2 c=20+2 c \\
f(5)=20+2 c \\
\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{-}} x^{2}-c=25-c
\end{gathered}
$$

Therefore, we have $25-c=20+2 c$ so $3 c=5$ and $c=5 / 3$.
13) Describe the set $S=\{x \in \mathbb{R}:|4 x-3|>2$ and $|x-2| \leq 1\}$ in terms of intervals.

The inequality $|4 x-3|>2$ tells us that either $4 x-3>2$ or $4 x-3<-2$, so either $x>5 / 4$ or $x<1 / 4$.

The inequality $|x-2| \leq 1$ tells us that $-1 \leq x-2 \leq 1$, so $1 \leq x \leq 3$.
If $x<1 / 4$ for the first inequality, the second inequality is not satisfied. Therefore, we need $x>5 / 4$. Then we already have $x \geq 1$ and the only extra condition is $x \leq 3$. Therefore, $S=(5 / 4,3]$.
14) Complete the square for $4 x^{2}-6 x+1$ to solve $4 x^{2}-6 x+1=0$.

We first factor out 4.
$4 x^{2}-6 x+1=4\left(x^{2}-\frac{3}{2} x+\frac{1}{4}\right)=4\left[\left(x-\frac{3}{4}\right)^{2}-\left(\frac{3}{4}\right)^{2}+\frac{1}{4}\right]=4\left[\left(x-\frac{3}{4}\right)^{2}-\frac{5}{16}\right]$
Setting this to zero, we have $(x-(3 / 4))^{2}=5 / 16$, so $x-3 / 4= \pm \sqrt{5} / 4$, so $x=3 / 4 \pm \sqrt{5} / 4$.
15) Find the horizontal and vertical asymptotes of

$$
\frac{2 x}{\sqrt{3 x^{2}-1}}
$$

To find the vertical asymptotes, we set the denominator equal to zero, so we have vertical asymptotes, $x=\sqrt{1 / 3}$ and $x=-\sqrt{1 / 3}$.

To find the horizontal asymptotes, we take the limits.
$\lim _{x \rightarrow-\infty} \frac{2 x}{\sqrt{3 x^{2}-1}}=\lim _{x \rightarrow-\infty} \frac{2 x}{|x| \sqrt{3-\frac{1}{x^{2}}}}=\lim _{x \rightarrow-\infty} \frac{2 x}{-x \sqrt{3-\frac{1}{x^{2}}}}=\lim _{x \rightarrow-\infty} \frac{-2}{\sqrt{3-\frac{1}{x^{2}}}}=\frac{-2}{\sqrt{3}}$
$\lim _{x \rightarrow \infty} \frac{2 x}{\sqrt{3 x^{2}-1}}=\lim _{x \rightarrow \infty} \frac{2 x}{|x| \sqrt{3-1 / x^{2}}}=\lim _{x \rightarrow \infty} \frac{2 x}{x \sqrt{3-1 / x^{2}}}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{3-1 / x^{2}}}=\frac{2}{\sqrt{3}}$
Therefore, the horizontal asymptotes are $y=-2 / \sqrt{3}$ and $y=2 / \sqrt{3}$.
16) Find the equation of the tangent line to the function $f(x)=x^{3}+5 x+2$ at $a=3$.
$f^{\prime}(x)=3 x^{2}+5$. The slope of the tangent line is $f^{\prime}(a)=27+5=32$. The tangent line also goes through the point $(a, f(a))$ and $f(a)=27+15+2=44$, so the equation of the tangent line is

$$
y-44=32(x-3)
$$

17) Two squares are placed so their sides are touching as shown. The sum of the lengths of one side of each square is 10 ft . Suppose the length of the left square is x feet. The left square is painted with paint costing $\$ 6$ per square foot. The right square is painted with paint costing $\$ 4$ per square foot. For which x will the cost be a minimum?

The side of the right square is $10-x$, so the cost is

$$
C(x)=6 x^{2}+4(10-x)^{2}
$$

To find the minimum, we take the derivative. $C^{\prime}(x)=12 x+8(10-x)(-1)=$ $20 x-80=0$, so $x=4$ is a critical point. Looking at the derivative, we see that $C(x)$ is decreasing to the left of 4 and increasing to the right, so $x=4$ gives the minimum.
18) Simplify $\cos \left(\sin ^{-1}\left(x^{2}\right)\right)$.

There are two ways to approach this problem. Geometrically, we let $\theta=$ $\sin ^{-1}\left(x^{2}\right)$, so $\sin (\theta)=x^{2}$ and we draw a triangle.

The remaining side has length $\sqrt{1^{2}-\left(x^{2}\right)^{2}}=\sqrt{1-x^{4}}$. Therefore,

$$
\cos \left(\sin ^{-1}\left(x^{2}\right)\right)=\cos (\theta)=\sqrt{1-x^{4}}
$$

Alternatively, we can use trig identities.

$$
\cos \left(\sin ^{-1}\left(x^{2}\right)\right)=\sqrt{1-\sin ^{2}\left(\sin ^{-1}\left(x^{2}\right)\right)}=\sqrt{1-\left(x^{2}\right)^{2}}=\sqrt{1-x^{4}}
$$

19) Solve $\ln \left(x^{2}+10\right)-\ln \left(x^{2}+1\right)=3 \ln 2$

We use properties of logarithms: $\ln \left(x^{2}+10\right)-\ln \left(x^{2}+1\right)=\ln \left(\left(x^{2}+10\right) /\left(x^{2}+1\right)\right)$ and $3 \ln 2=\ln \left(2^{3}\right)=\ln 8$. Then
$\ln \frac{x^{2}+10}{x^{2}+1}=\ln 8 \Rightarrow \frac{x^{2}+10}{x^{2}+1}=8 \Rightarrow x^{2}+10=8 x^{2}+8 \Rightarrow 7 x^{2}-2=0 \Rightarrow x= \pm \sqrt{2 / 7}$
20) Use the limit definition of the derivative to calculate the derivative of $f(t)=t^{-2}$ at $a=1$.
$f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{(1+h)^{2}}-1}{h}=\lim _{h \rightarrow 0} \frac{-2 h-h^{2}}{h(1+h)^{2}}=\lim _{h \rightarrow 0} \frac{-2-h}{(1+h)^{2}}=-2$
21) Find all functions $f(x)$ such that $f^{\prime \prime}(x)=x^{2}\left(x^{3}+2 x+1\right)$.

We have $f^{\prime \prime}(x)=x^{5}+2 x^{3}+x^{2}$ so

$$
\begin{gathered}
f^{\prime}(x)=\frac{x^{6}}{6}+\frac{x^{4}}{2}+\frac{x^{3}}{3}+c \\
f(x)=\frac{x^{7}}{42}+\frac{x^{5}}{10}+\frac{x^{4}}{12}+c x+d
\end{gathered}
$$

Note: you can use any letters you wish for the constants.
22) Differentiate $\tan ^{-1}(\ln x), \ln \left(\sin ^{-1}\left(x^{2}\right)\right),\left(x^{2}+3\right) /\left(2 x^{2}+1\right)$ and $\sin ^{3}\left(e^{2 x}+\ln x\right)$.

$$
\begin{gathered}
\frac{d}{d x} \tan ^{-1}(\ln x)=\frac{1}{1+(\ln x)^{2}} \frac{1}{x} \\
\frac{d}{d x} \ln \left(\sin ^{-1}\left(x^{2}\right)\right)=\frac{1}{\sin ^{-1}\left(x^{2}\right)} \frac{1}{\sqrt{1-x^{4}}}(2 x) \\
\frac{d}{d x} \frac{x^{2}+3}{2 x^{2}+1}=\frac{\left(2 x^{2}+1\right)(2 x)-\left(x^{2}+3\right)(4 x)}{\left(2 x^{2}+1\right)^{2}} \\
\frac{d}{d x} \sin ^{3}\left(e^{2 x}+\ln x\right)=3 \sin ^{2}\left(e^{2 x}+\ln x\right)\left(\cos \left(e^{2 x}+\ln x\right)\right)\left(2 e^{2 x}+\frac{1}{x}\right)
\end{gathered}
$$

23) Let $f(x)=\left(1-x^{2}\right)^{4}$. Find the intervals where $f(x)$ is increasing, decreasing, concave up, and concave down. Give any inflection points and local extremas.

$$
f^{\prime}(x)=4\left(1-x^{2}\right)^{3}(-2 x)=-8 x\left(1-x^{2}\right)^{3}
$$

so the critical points are $-1,0,1$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =-8 x \cdot 3\left(1-x^{2}\right)^{2}(-2 x)+\left(1-x^{2}\right)^{3}(-8)=8\left(1-x^{2}\right)^{2}\left(6 x^{2}-1+x^{2}\right) \\
& =8\left(1-x^{2}\right)^{2}\left(7 x^{2}-1\right)
\end{aligned}
$$

so the second derivative is zero at $-1,-\sqrt{1 / 7}, \sqrt{1 / 7}, 1$.

24) Find the maximum and minimum values of $f(x)=(\cos x)(\sin x)$ on the interval $\left[0, \frac{\pi}{2}\right]$.

$$
f^{\prime}(x)=(\cos x)(\cos x)+(\sin x)(-\sin x)=\cos ^{2} x-\sin ^{2} x=1-\sin ^{2} x-\sin ^{2} x=1-2 \sin ^{2} x
$$

Setting $f^{\prime}(x)=0$, we have $\sin x= \pm 1 / \sqrt{2}$, In the interval, $[0, \pi / 2]$, this means $x=\pi / 4$. We now check the values of $f(x)$ at the endpoints and the critical point. $f(0)=0, f(\pi / 4)=1 / 2$ and $f(\pi / 2)=0$, so the maximum is $1 / 2$ attained when $x=\pi / 4$ and the minimum is 0 attained at both $x=0$ and $x=\pi / 2$.
25) Let $f(x)=\frac{1}{x+1}$. Give the intervals on which f is increasing, decreasing, concave up, concave down. Give any asymptotes, inflection points and local extremas. Use this information to sketch the graph of $f(x)$.

We write $f(x)=(x+1)^{-1}$, so $f^{\prime}(x)=-(x+1)^{-2}$ and $f^{\prime \prime}(x)=2(x+1)^{-3}$. We have a vertical asymptote at $x=-1$.

$$
\lim _{x \rightarrow-1^{+}} f(x)=\infty, \lim _{x \rightarrow-1^{-}} f(x)=-\infty
$$

We also have

$$
\lim _{x \rightarrow \infty} f(x)=0=\lim _{x \rightarrow-\infty} f(x)=0
$$

Therefore, there is a horizontal asymptote at $y=0$. The derivative is never zero but it is undefined at -1 . The derivative is negative on both sides of -1 , so there are no local extremum. The second derivative is positive when $x>-1$ and is negative when $x<-1$. Therefore, the function is concave up for $x>-1$ and concave down for $x<-1$, so there is an inflection point at $x=-1$. Here is a general sketch of the graph.

26) Use two iterations of Newton's method to approximate $\sqrt{5}$.

We note that $\sqrt{5}$ is a zero of $f(x)=x^{2}-5$. A good initial guess is $x_{0}=2$, since $\sqrt{4}=2$. Then $f\left(x_{0}\right)=2^{2}-5=-1$. We have $f^{\prime}(x)=2 x$, so $f^{\prime}\left(x_{0}\right)=4$. Then

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=2-\frac{-1}{4}=\frac{9}{4} .
$$

For the second interation, we have $f\left(x_{1}\right)=(9 / 4)^{2}-5=81 / 16-80 / 16=1 / 16$ and $f^{\prime}\left(x_{1}\right)=9 / 2$, so

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=\frac{9}{4}-\frac{1 / 16}{9 / 2}=\frac{9}{4}-\frac{1}{8 \cdot 9}=\frac{9 \cdot 18}{72}-\frac{1}{72}=\frac{162-1}{72}=\frac{161}{72}
$$

Therefore, $\sqrt{5} \approx 161 / 72$.
27) Suppose $f(x)$ is a differentiable function with $f(9)=3, f^{\prime}(9)=6$ and $f^{\prime \prime}(9)=-2$. If $F(x)=f\left(x^{2}\right)$, compute $F(3), F^{\prime}(3)$ and $F^{\prime \prime}(3)$.
$F(3)=f\left(3^{2}\right)=f(9)=3$. We have $F^{\prime}(x)=f^{\prime}\left(x^{2}\right)(2 x)$, so $F^{\prime}(3)=$ $f^{\prime}(9)(6)=36$. Then $F^{\prime \prime}(x)=f^{\prime}\left(x^{2}\right)(2)+(2 x) f^{\prime \prime}\left(x^{2}\right)(2 x)$, so $F^{\prime \prime}(3)=2 f^{\prime}(9)+$ $36 f^{\prime \prime}(9)=12-72=-60$.
28) Find constants a, b such that the function $f(x)$, defined below, is differentiable.

$$
f(x)=\left\{\begin{array}{lc}
a x+1 & \text { if } x<1 \\
x^{2}+b & \text { if } x \geq 1
\end{array}\right.
$$

To be differentiable, the function must be continuous, so we need $a(1)+1=$ $a+1=1^{2}+b=b+1$, so $a=b$. The derivative of the first equation is a and
the derivative of the second equation is $2 x$. We need these derivatives to match at $x=1$, so we need $a=2$, so $b=2$.
29) Evaluate the integrals: $\int(9 t-4)^{11} d t, \int_{1}^{2} \frac{4 t}{t^{2}+1} d t$.

For the first integral, we let $u=9 t-4$ so $d u=9 d t$ and $d t=(1 / 9) d u$

$$
\int(9 t-4)^{11} d t=\frac{1}{9} \int u^{11} d u=\frac{u^{12}}{108}+c=\frac{(9 t-4)^{12}}{108}+c
$$

For the second integral, we let $u=t^{2}+1$ so $d u=2 t d t$ and $4 t d t=2 d u$. Also, when $t=1, u=2$ and when $t=2, u=5$, so

$$
\int_{1}^{2} \frac{4 t}{t^{2}+1} d t=2 \int_{2}^{5} \frac{d u}{u}=\left.2 \ln u\right|_{2} ^{5}=2(\ln 5-\ln 2)=2 \ln (5 / 2)
$$

30) Calculate

$$
\lim _{x \rightarrow 0} \frac{\int_{0}^{x} e^{t^{2}}}{x}
$$

This limit is of the form $0 / 0$ so we can apply L'Hopital. We note that by the fundamental theorem of calculus,

$$
\begin{gathered}
\frac{d}{d x} \int_{0}^{x} e^{t^{2}}=e^{x^{2}} \\
\lim _{x \rightarrow 0} \frac{\int_{0}^{x} e^{t^{2}}}{x}=\lim _{x \rightarrow 0} \frac{e^{x^{2}}}{1}=e^{0}=1
\end{gathered}
$$

31) Assume that $f(t)$ is a function such that $\int_{1}^{4} f(t) d t=-2, \int_{0}^{5} f(t) d t=3$ and $\int_{4}^{5} f(t) d t=-1$. Find $\int_{0}^{1} f(t) d t$.

$$
\begin{aligned}
\int_{0}^{1} f(t) d t & =\int_{0}^{5} f(t) d t-\int_{1}^{5} f(t) d t=\int_{0}^{5} f(t) d t-\left[\int_{1}^{4} f(t) d t+\int_{4}^{5} f(t) d t\right] \\
& =3-(-2-1)=6
\end{aligned}
$$

