Questions for 151 Televised Final Review

1) Find

$$
\lim _{x \rightarrow 0} x^{x}
$$

2) Find $f^{\prime}(x)$ where

$$
f(x)=(\cos x)^{x}
$$

3) Approximate (8.1) $)^{1 / 3}$ using linearization.
4) Find L_{4} and R_{4} for $f(x)=x^{2}$ on the interval $[1,3]$.
5) Two circles have the same center. The inner circle has radius r which is increasing at $3 \mathrm{in} / \mathrm{s}$. The outer circle has radius R which is increasing at $2 i n / s$. Suppose that A is the area of the region between the circles. When $r=7 i n$ and $R=10 i n$, what is A ? How fast is A changing? Is A increasing or decreasing?
6) Find $\frac{d y}{d x}$ if $y^{3}=3 x y+y^{2}+4 x^{3}$.
7) Find $\frac{d y}{d x}$ if $y=\left(\ln \left(x^{2}\right)+2 x^{3}\right)^{1 / 3}$.
8) Calculate

$$
\lim _{x \rightarrow 0} \frac{\sin x-x}{e^{x}-1}
$$

9) Calculate the following limits:

$$
\lim _{x \rightarrow 3} \frac{x^{2}+5 x+6}{x^{2}+2 x-3}, \lim _{x \rightarrow-3} \frac{x^{2}+5 x+6}{x^{2}+2 x-3}, \lim _{x \rightarrow \infty} \frac{x^{2}+5 x+6}{x^{2}+2 x-3}
$$

10) Let $f(x)=\cos (3 x)+3 x^{2}-6 x+1$. Explain why there must be a root of $f(x)=0$ in $[-1,1]$.
11) Suppose that the function f is continuous on $[1,3]$ and differentiable on $(1,3)$. If $f(1)=9$ and $f^{\prime}(x) \geq 2$ for $1 \leq x \leq 3$, how small can $f(3)$ possibly be?
12) Find the value of c that makes the function continuous.

$$
f(x)= \begin{cases}x^{2}-c & \text { for } x<5 \\ 4 x+2 c & \text { for } x \geq 5\end{cases}
$$

13) Describe the set $S=\{x \in \mathbb{R}:|4 x-3|>2$ and $|x-2| \leq 1\}$ in terms of intervals.
14) Complete the square for $4 x^{2}-6 x+1$ to solve $4 x^{2}-6 x+1=0$.
15) Find the horizontal and vertical asymptotes of

$$
\frac{2 x}{\sqrt{3 x^{2}-1}}
$$

16) Find the equation of the tangent line to the function $f(x)=x^{3}+5 x+2$ at $a=3$.
17) Two squares are placed so their sides are touching as shown. The sum of the lengths of one side of each square is 10 ft . Suppose the length of the left square is x feet. The left square is painted with paint costing $\$ 6$ per square foot.

The right square is painted with paint costing $\$ 4$ per square foot. For which x will the cost be a minimum?

18) Simplify $\cos \left(\sin ^{-1}\left(x^{2}\right)\right)$.
19) Solve $\ln \left(x^{2}+10\right)-\ln \left(x^{2}+1\right)=3 \ln 2$
20) Use the limit definition of the derivative to calculate the derivative of $f(t)=t^{-2}$ at $a=1$.
21) Find all functions $f(x)$ such that $f^{\prime \prime}(x)=x^{2}\left(x^{3}+2 x+1\right)$.
22) Differentiate $\tan ^{-1}(\ln x), \ln \left(\sin ^{-1}\left(x^{2}\right)\right),\left(x^{2}+3\right) /\left(2 x^{2}+1\right)$ and $\sin ^{3}\left(e^{2 x}+\ln x\right)$.
23) Let $f(x)=\left(1-x^{2}\right)^{4}$. Find the intervals where $f(x)$ is increasing, decreasing, concave up, and concave down. Give any inflection points and local extremas.
24) Find the maximum and minimum values of $f(x)=(\cos x)(\sin x)$ on the interval $\left[0, \frac{\pi}{2}\right]$.
25) Let $f(x)=\frac{1}{x+1}$. Give the intervals on which f is increasing, decreasing, concave up, concave down. Give any asymptotes, inflection points and local extremas. Use this information to sketch the graph of $f(x)$.
26) Use two iterations of Newton's method to approximate $\sqrt{5}$.
27) Suppose $f(x)$ is a differentiable function with $f(9)=3, f^{\prime}(9)=6$ and $f^{\prime \prime}(9)=-2$. If $F(x)=f\left(x^{2}\right)$, compute $F(3), F^{\prime}(3)$ and $F^{\prime \prime}(3)$.
28) Find constants a, b such that the function $f(x)$, defined below, is differentiable.

$$
f(x)=\left\{\begin{array}{lc}
a x+1 & \text { if } x<1 \\
x^{2}+b & \text { if } x \geq 1
\end{array}\right.
$$

29) Evaluate the integrals: $\int(9 t-4)^{11} d t, \int_{1}^{2} \frac{4 t}{t^{2}+1} d t$.
30) Calculate

$$
\lim _{x \rightarrow 0} \frac{\int_{0}^{x} e^{t^{2}}}{x}
$$

31) Assume that $f(t)$ is a function such that $\int_{1}^{4} f(t) d t=-2, \int_{0}^{5} f(t) d t=3$ and $\int_{4}^{5} f(t) d t=-1$. Find $\int_{0}^{1} f(t) d t$.
