1. Sketch the three-sided region in the first quadrant bounded by the y-axis and the two curves $y = \tan x$ and $y = \sec x$. Compute the area of this region.

2. A computer program reports the following:

$$\int_{0}^{1} \frac{x}{x+1} \, dx = 1 - \ln 2; \quad \int_{0}^{\infty} \frac{t}{(2t+1)(t+1)^2} \, dt = 1 - \ln 2.$$

Verify that the two integrals are equal. Notice that you are not asked to evaluate these definite integrals, only to explain why the values are equal.

Hint Find the antiderivatives and compute both integrals: a very direct method.

(Hint) Change one integral into the other: x goes from 0 to 1 and t, from 0 to ∞ — everything involved is a rational function, so make the change from x to t with a simple rational function. After you find a suitable change of variables, how does dx change to dt?

3.* Find the limits for the following indeterminate forms of the type “$\infty - \infty$”.

a) \(\lim_{x \to 0} \frac{1}{\sin x} - \frac{1}{x} \).

b) \(\lim_{x \to 0} \frac{1}{x^2} - \frac{1}{x} \).

c) \(\lim_{x \to 0} \frac{1+x}{x} - \frac{1-x}{x} \).

4. Suppose that a is a positive constant and that R is the region bounded above by $y = \frac{1}{x^a}$, below by $y = 0$, and on the left by the line $x = 1$.

a) Sketch the curves $y = \frac{1}{x^a}$ for $a = .5, 1$ and 2. Which of these is closest to the x-axis?

b) For which positive numbers a do you get a convergent integral when you attempt to calculate the area of R?

c) Same as b), but for the volume of the solid obtained by rotating R around the x-axis.

d) Same as c), but for the volume of the solid obtained by rotating R around the y-axis.

5. The curve $y = e^{-x}$, $x \geq 0$, is revolved about the x-axis. Does the resulting surface have finite or infinite area? (Remember that you can sometimes decide whether an improper integral converges without calculating it exactly.)

* For those to whom L'Hôpital's Rule is new.