1. Graph the functions \(f(x) = \frac{4x}{x^2+1} \) and \(g(x) = 2 \sin(2 \arctan x) \) in the same viewing window over the interval \(-5 \leq x \leq 5\). Explain what you see.

2. Suppose that \(f(x) = e^{-Ax} \), where \(A \) is a positive real number.
 a) Show that the integral \(\int_1^2 f(x) \, dx \to 0 \) as \(A \to \infty \). (You may wish to draw a picture, but other verification is also necessary.)
 b) Show that the integral \(\int_1^2 xf(x) \, dx \to 0 \) as \(A \to \infty \). (You may wish to draw a picture, but other verification is also necessary.)
 c) Show that the integral \(\int_1^2 x^2f(x) \, dx \to 0 \) as \(A \to \infty \). (You may wish to draw a picture, but other verification is also necessary.)

Note It isn’t always necessary or even possible to compute every integral exactly. But this integral can be estimated to get enough information.

3. a) Compute \(\int_0^{2\pi} (\cos(mx))(\cos(nx)) \, dx \) if \(m \) and \(n \) are integers.
 (Be careful: there are two different results, one when \(m = n \) and one when \(m \neq n \).)
 b) If \(f(x) = A \cos(x) + B \cos(2x) + C \cos(3x) \), \(\int_0^{2\pi} f(x) \cos(x) \, dx = 5 \), \(\int_0^{2\pi} f(x) \cos(2x) \, dx = 6 \), and \(\int_0^{2\pi} f(x) \cos(3x) \, dx = 7 \), then find \(A \) and \(B \) and \(C \).

Note The ideas of this computation are used often with Fourier series, a standard method of analyzing periodic phenomena. A graph of \(f \) is shown to the right. Your ear (and some mechanical and electrical devices) can find 5 and 6 and 7 in this graph!

4. a) Suppose \(A \) is a positive real number and \(m_A \) is the average value of \((\sin(Ax))^3 \) on the interval \([0, 2]\). Compute \(m_A \).

Note The answer will have several terms and will not be simple.

b) What is \(\lim_{A \to \infty} m_A \) ?

Note This answer should be simple. Explain briefly why it is correct. You may refer to graphs of functions if that is helpful.

5. An oil tank has the shape of a cylinder whose diameter is 4 feet. It is mounted so that the axis of the cylinder is horizontal (the circular cross-sections of the cylinder are vertical). If the depth of the water is 3 feet, what percentage of the total capacity of the tank is filled?

After drawing a picture and setting up this problem, solve it three ways:

a) Use elementary geometry (compare areas of circular sectors).

b) Express the answer in terms of a definite integral, then obtain an approximate numerical value for the integral using the \texttt{fnInt}\(f \) function on your calculator.

c) Evaluate the integral in b) exactly in terms of elementary functions using a trig substitution, then obtain approximate numerical values for these functions using your calculator.