Problems for 152H

9/17/2009

1. Suppose f is defined by $f(x) = 3e^{\cos x}$. Maple produced graphs of f and its first four derivatives on the interval [2, 7] (be careful when examining the derivative graphs – look carefully at the vertical scales!). The graph of f is to the right, and the graphs of the first four derivatives of f are <u>on the back of this page</u>. You should assume that the graphs given are correct. Suppose I is the value of $\int_2^7 f(x) dx$.

a) Use the graph of f alone to estimate I.

b) Use the information in the graphs to tell how many subdivisions N are needed so that the Trapezoid Rule approximation T_N will approximate I with error $< 10^{-5}$.

c) Use the information in the graphs to tell how many subdivisions N are needed so that the Simpson's Rule approximation S_N will approximate I with error $< 10^{-5}$.

2. Consider the function $f(x) = e^x \sin(Nx)$ on the interval [0, 1] where N is a positive integer.

a) Make three separate sketches of the graph of this function when N = 5, N = 10, and N = 100. (Use a calculator and try to make "good" sketches.)

b) Compute $\int_0^1 f(x) dx$ in general, for any positive integer N. Evaluate the result when N = 5, N = 10, and N = 100.

c) What happens to the graph and to the value of the integral as $N \to \infty$? Explain how the graphs confirm the limiting behavior of the integral's value.

3. The only information known about a function T and its derivatives is contained in this table:

a) Compute $\int_2^3 T'(x) dx$.	x	T(x)	T'(x)	T''(x)
	1	2	-2	2
b) Compute $\int_{2}^{3} T''(x) dx$.	2	3	6	5
	3	7	4	-4
c) Compute $\int_2^3 x dx$.	4	2	5	7

- d) Compute $\int_2^3 x T''(x) dx$. Don't look at b) and c)! Integrate by parts.
- e) Compute $\int_2^3 x^2 T'''(x) dx$. And again and again.

4. a) For x near 0, $\sin x$ is well-approximated by its tangent line at x = 0. What is this tangent line?

This problem continues on the other side of the paper.

b) Approximation over an interval is preferred over approximation near a point for many purposes. One criterion for assessing the accuracy of such an approximation is *mean-square* error. The mean-square error between a straight line y = Ax going through the origin and the function sin x over the interval [0, 1] is given by the definite integral $\int_0^1 (\sin x - Ax)^2 dx$. Find the A which minimizes this integral.

Hint Expand the integrand, compute the integral, and find the A minimizing the result. c) Sketch $\sin x$ and the straight lines found in a) and b) on the unit interval [0, 1].

Graphs for problem 1