1. A computer program reports the following:

\[
\int_0^1 \frac{x}{x + 1} \, dx = 1 - \ln 2; \quad \int_0^\infty \frac{t}{(2t + 1)(t + 1)^2} \, dt = 1 - \ln 2.
\]

Verify that the two integrals are equal. Notice that you are not asked to evaluate these definite integrals, only to explain why the values are equal.

Hint Find the antiderivatives and compute both integrals: a very direct method.

(Hint) Change one integral into the other: \(x \) goes from 0 to 1 and \(t \), from 0 to \(\infty \) – everything involved is a rational function, so make the change from \(x \) to \(t \) with a simple rational function. After you find a suitable change of variables, how does \(dx \) change to \(dt \)?

2. Sketch carefully the graphs of \(f(x) = (1 + e^{-x})^2 \) and \(g(x) = (1 + e^{-2x})^2 \) for \(x > 0 \), and compute how much area there is between them in the first quadrant.

3. When a capacitor of capacitance \(C \) is charged by a source of voltage \(V \), the power expended at time \(t \) is \(P(t) = \frac{V^2}{R} \left(e^{-t/RC} - e^{-2t/RC} \right) \), where \(R \) is the resistance in the circuit. The total energy stored in the capacitor is \(W = \int_0^\infty P(t) \, dt \).

Show that \(W = \frac{1}{2} CV^2 \). (This is problem 81 in section 7.7 of the textbook.)

4. The curve \(y = e^{-x}, \ x \geq 0 \), is revolved about the \(x \)-axis. Does the resulting surface have finite or infinite area? (You can sometimes decide whether an improper integral converges without calculating it exactly.)

5. Sketch the three-sided region in the first quadrant bounded by the \(y \)-axis and the two curves \(y = \tan x \) and \(y = \sec x \). Compute the area of this region. Also compute the volume of the solid obtained when this region is revolved around the \(x \)-axis.

One problem will be selected for a writeup to be handed in at the next recitation meeting. Please see Professor Greenfield’s Math 152 webpage for this semester to learn which problem to hand in.