Continuity & differentiability

1. Here \(f(x) = \begin{cases}
 x + 3 & \text{if } x \leq -2 \\
 \frac{1}{2}x^2 + A & \text{if } -2 < x
\end{cases} \) where \(A \) is a constant to be determined. Find \(A \) so that \(f(x) \) is continuous for all values of \(x \). Sketch a graph of \(y = f(x) \) using that value of \(A \) for \(-4 \leq x \leq 2\). Is \(f(x) \) differentiable at \(x = -2 \) using that value of \(A \)?

2. Here \(f(x) = \begin{cases}
 Ax^2 - 1 & \text{if } x < -1 \\
 x + B & \text{if } -1 \leq x \leq 1 \\
 2 & \text{if } 1 < x
\end{cases} \) Find numbers \(A \) and \(B \) so that \(f(x) \) is continuous for all values of \(x \). Sketch a graph of \(y = f(x) \) for \(-3 \leq x \leq 3\).

3. In this problem \(f(x) = \begin{cases}
 1 + x^2 & \text{if } x < 2 \\
 A + Bx & \text{if } -2 \leq x < 1 \\
 x^2 & \text{if } x \geq 1
\end{cases} \) Find \(A \) and \(B \) so that \(f(x) \) is continuous at all points. Sketch a graph of \(y = f(x) \) for \(-3 \leq x \leq 3\). For which values of \(x \) is \(f(x) \) not differentiable?

4. In the graph of \(y = f(x) \) to the right, identify with \(\text{m} \) any point which is a relative minimum; \(\text{M} \) any point which is a relative maximum; \(\text{C} \) any point which is a critical point; \(\text{I} \) any point which is an inflection point; \(\text{NC} \) any point at which \(f(x) \) is not continuous; and \(\text{ND} \) any point at which \(f(x) \) is not differentiable. Some points may have more than one label.

LETOVERS

Log/exp etc.

1. Find the range of \(f(x) = e^{-2x} + e^{3x} \).
2. Find the range of \(f(x) = \frac{\ln(x^2+1)}{x^2+1} \).