If \(\lim_{x \to b^-} f(x) = +\infty \) or \(\lim_{x \to b^+} f(x) = -\infty \) or \(\lim_{x \to b^-} f(x) = -\infty \) or \(\lim_{x \to b^+} f(x) = +\infty \), then \(x = b \) is a **vertical asymptote** of the graph of \(y=f(x) \).

If \(\lim_{x \to +\infty} f(x) = a \) or \(\lim_{x \to -\infty} f(x) = a \), then \(y = a \) is a **horizontal asymptote** of the graph of \(y = f(x) \).

Shapes of curves

The signs of \(f' \) and \(f'' \) determine \{increasing\}creasing and concave \{up\}\down\} behavior of the graph. All possibilities can occur: the signs of \(f' \) and \(f'' \) can be independent. So pieces of \(y = f(x) \) can look like the curves to the right. The graphs of functions can bend up\ yet decrease. Functions can increase but also bend down. \(f''<0 \)

This may be weird but such behavior can occur.

Please try these problems. Expect some algebraic irritation. Some practice is good, though.

Q1. Suppose \(f(x) = \frac{x^2 + 3}{x^2 + x + 4} \).

a) What is the domain of \(f \)? Find any horizontal or vertical asymptotes of \(f \).
b) Find any relative extrema of \(f \). Find intervals where \(f \) increases and decreases.
c) The **range** of a function is the collection of all possible values (outputs) of the function. What is the exact range of \(f(x) \)? Explain your answer using calculus.

Q2. Suppose \(f(x) = \frac{e^x - 2}{e^x + 1} \).

a) What is the domain of \(f \)? Find any horizontal or vertical asymptotes of \(f \).
b) Find any relative extrema of \(f \). Find intervals where \(f \) increases and decreases.
c) Find any inflection points of \(f \). Find intervals where \(f \) is concave up and concave down.
d) What is the exact range of \(f(x) \)? Explain your answer using calculus.

Q3. Suppose \(f(x) = \frac{e^x + e^{2x}}{3e^x - e^{2x}} \).

a) What is the domain of \(f \)? Find any horizontal or vertical asymptotes of \(f \).
b) Find any relative extrema of \(f \). Find intervals where \(f \) increases and decreases.
c) What is the exact range of \(f(x) \)? Explain your answer using calculus.

Q4. Suppose \(f(x) = \frac{\sqrt{x^2 + 3}}{x + 1} \).

a) What is the domain of \(f \)? Find any horizontal or vertical asymptotes of \(f \).
b) Find any relative extrema of \(f \). Find intervals where \(f \) increases and decreases.
c) What is the exact range of \(f(x) \)? Explain your answer using calculus.