B1 Suppose \(K \) is a compact non-empty subset of \(\mathbb{C} \). Show that there is \(T \in L(H) \) so that \(\sigma(T) = K \).

B2 The Volterra operator, \(V: L^2([0, 1]) \to L^2([0, 1]) \), is defined by \(Vf(x) = \int_0^x f(t) \, dt \).

a) What is \(V^* \)? \(V + V^* \)? What is the image of \(V + V^* \)?

Remark This is problem 7 of section 2.2 in Conway’s *A Course in Functional Analysis*.

b) What is \(\sigma_p(V) \), the collection of eigenvalues of \(V \)?

B3 (Continuing the preceding problem.) What can you say about \(\sigma(V) \)? (You will probably need the Spectral Radius Formula and inductive discussion of \(V^n \) and \(\|V^n\| \).)

B4 (Hilbert matrix) Show that \((Ae_j, e_i) = (i+j+1)^{-1} \) for \(0 \leq i,j < \infty \) defines a bounded operator on \(\ell^2(\mathbb{N} \cup \{0\}) \) (square-summable sequences beginning with the index 0) with \(\|A\| \leq \pi \).

Remark This is problem 10 of section 2.1 in Conway’s *A Course in Functional Analysis*. The problem statement there contains further references.

B5 If \(H \) is an infinite dimensional Hilbert space, show that no orthonormal basis for \(H \) is a Hamel (vector space) basis. Show that a Hamel basis is uncountable.

B6 Suppose \(H \) is the collection of all absolutely continuous functions \(f(0): [0, 1] \to \mathbb{F} \) with \(f(0) = 0 \) and \(f' \in L^2([0, 1]) \). Let \(\langle f, g \rangle = \int_0^1 f'(t)g'(t) \, dt \).

a) Prove that \(H \) is a Hilbert space.

b) Find an orthonormal basis of \(H \).

Remark This is problem 3 of section 1.1 and problem 4 of section 1.4 in Conway’s *A Course in Functional Analysis*.

B7 Let \(H = \ell^2(\mathbb{N} \cup \{0\}) \) (square-summable sequences beginning with the index 0).

a) Show that if \(\{\alpha_n\} \in H \), then the power series \(\sum_{n=0}^{\infty} \alpha_n z^n \) has radius of convergence \(\geq 1 \).

b) If \(|\lambda| < 1 \) and \(L: H \to \mathbb{F} \) is defined by \(L(\{\alpha_n\}) = \sum_{n=0}^{\infty} \alpha_n \lambda^n \), find the vector \(h_0 \) in \(H \) so that \(L(h) = \langle h, h_0 \rangle \) for all \(h \in H \). What is the norm of \(L \)?

c) Define \(\tilde{L}: H \to \mathbb{F} \) by \(\tilde{L}(\{\alpha_n\}) = \sum_{n=1}^{\infty} n\alpha_n \lambda^{n-1} \), again with \(|\lambda| < 1 \). Now find the corresponding \(\tilde{h}_0 \) so that \(\tilde{L}(h) = \langle h, \tilde{h}_0 \rangle \) for all \(h \in H \).

Remark This is problem 3 and problem 4 of section 1.3 in Conway’s *A Course in Functional Analysis*.

B8 Suppose that \(A \) and \(B \) are self-adjoint. Prove that \(AB \) is self-adjoint if and only \(AB = BA \).

Remark This is problem 11 of section 2.3 in Conway’s *A Course in Functional Analysis*.