Please do all problems.

1. Suppose that u and v are the real and imaginary parts respectively of an entire function f. Find all f such that $u = v^2$.

2. Suppose U is an open subset of \mathbb{C}. Show that there is a sequence of compact subsets of U, $\{K_n\}_{n \in \mathbb{N}}$ so that $\bigcup_{n=1}^{\infty} K_n = U$ with each K_n contained in the interior of K_{n+1}.

3. Suppose that f is an entire function, and that for all $|z| > 7$, $|f(z)| \leq 5e^{(|z|^2)}$. Find explicit positive numbers A and B so that if $|z| > A$, then $|f''(z)| \leq Be^{(3|z|^2)}$

4. Suppose $f(z) = \frac{1}{z^2(e^z - 1)}$.
 a) Find and classify (removable, pole, essential) all isolated singularities of f. If the isolated singularity is a pole, tell the order of the pole and the residue of f at the pole.
 b) Compute $\int_{\sigma} f(z) dz$ where σ is the closed curve displayed to the right.

5. What is the automorphism group of $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$? That is, describe all biholomorphic mappings from \mathbb{C}^* to itself. Decide whether or not this group is transitive. If it is not, describe the orbit and stabilizer of 1, and also describe the orbit and stabilizer of 2.

 Note The orbit of a point under a collection of mappings is the set of image points. The stabilizer (also called the stabilizer subgroup or the isotropy subgroup) of a group of bijections is the subgroup which keeps the indicated object (here, a point) fixed.

6. Suppose f is an entire function, and that, for all $z \in \mathbb{C}$, $f(z + i) = f(z + 1) = f(z)$ (so f is doubly periodic with periods i and 1). Prove that f is constant.