The mappings \(\text{CM} \) form a group \(\text{a quotient of } \text{GL}_2(P) \), by the appropriate homogeneity, the group of linear fractional transformations \(\text{LF}(\mathbb{C}) \).

Some nice facts about \(\text{LF}(\mathbb{C}) \) should be recorded.

1. \(\text{We use some language in Remmert (pp. 88-89).} \)

 Suppose \(G \) is a subgroup of automorphisms of a set \(S \).

 \(S \) is homogeneous with respect to \(G \) if, \(\forall \, s, \tilde{s} \in S \),

 \(\exists \, g \in G \, \text{with } g(s) = \tilde{s} \).

Lemma: If \(\exists \, c \in S \) with the orbit of \(c \) under \(G \)

(\text{that is } \{ s \in S : \exists \, g \in G \, \text{with } s = g(c) \} \) being all of \(S \),

then \(S \) is homogeneous.

Proof: Given \(s, \tilde{s} \in S \), \(\exists \, g \& \tilde{g} \) with \(s = g(c) \) and

\(\tilde{s} = \tilde{g}(c) \). Then \(\tilde{g} \circ g(s) = \tilde{s} \), so \(\exists \, g \, \text{in homogeneous,} \)

\(G \) is also said to act transitively on \(S \). \(\text{LF}(\mathbb{C}) \)

acts transitively on \(\text{CP}^1 \). Indeed, much more is true:

Prop. \(\text{LF}(\mathbb{C}) \) acts freely transitively on \(\text{CP}^1 \).

That is, given \(w_1, w_2, w_3 \) (all distinct) and \(z_1, z_2, z_3 \) (all distinct) \(\exists \, [w] \) with \([w]w_j = z_j \), \((j \neq 3) \).