Homework #1 Math 503 September 1, 2004 Due Wednesday, September 8, 2004

Please read §1.1 (pp. 3–10) in N^2 (my label for our text, *Complex Analysis in One Variable*, Second Edition, by Narasimhan and Nievergelt) so that you can help me with the lectures. Also please read all of the **Exercises 1–36** for Chapter 0 (pp. 259-266). Please hand in the following problems on Monday, September 6.

Problem 1: Exercise 7 and Exercise 8 state important inequalities which we will use many times. For all $z, w \in \mathbb{C}$, $|w + z| \leq |w| + |z|$ and $|w - z| \geq ||w| - |z||$. The first inequality is called the Triangle Inequality and the second is frequently called the Reverse Triangle Inequality. I hope you have seen them before and can prove them.

But a *reverse* inequality *could* be $|w+z| \stackrel{?}{\geq} |w| + |z|$. This inequality can be false (z = -1 and w = 1) but is sometimes true (when z and w are both positive real numbers, for example). Maybe we can *help* it to be true by putting in a magnification factor.

Prove that there is a connected open neighborhood S in \mathbb{C} of the positive real numbers so that for all $z, w \in S, 3|w+z| \ge |w|+|z|$.

Problem 2: If v and w are non-zero vectors in \mathbb{R}^2 , then the angle between v and w is $\operatorname{arccos}\left(\frac{v \cdot w}{\|v\| \|w\|}\right)$. A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ preserves angles if T is 1-to-1 and if, for all non-zero vectors v and w in \mathbb{R}^2 , the angle between v and w is the same as the angle between T(v) and T(w). Describe matrix representations for all linear maps from \mathbb{R}^2 to \mathbb{R}^2 which preserve angles. Further describe matrix representations for all linear maps from \mathbb{R}^2 to \mathbb{R}^2 which preserve angles and are orientation-preserving $(\det(T) > 0)$.

Problem 3: Suppose that u(x, y) and v(x, y) are C^1 real-valued functions defined on all of \mathbb{R}^2 . Let F(z), where z = x + iy, be defined by F(z) = u(x, y) + iv(x, y).

a) Can you find u and v so that F is \mathbb{C} -differentiable only when (x, y) = (0, 0) (the origin)? If yes, display and verify an example. If no, explain why not.

b) Can you find u and v so that F is \mathbb{C} -differentiable only when $x \ge 0$ (the closed right half-plane)? If yes, display and verify an example. If no, explain why not.

c) Can you find u and v so that F is C-differentiable only when $(x, y) \neq (0, 0)$ (the complement of the origin)? If yes, display and verify an example. If no, explain why not.

Problem 4: Do Exercise 24, which follows.

For each $c \in D(0,1)$ define a fractional linear transformation L_c by $L_c(z) := \frac{z-c}{1-\overline{c}z}$. Prove such a fractional linear transformation maps the unit disc onto the unit disc, and the unit circle onto the unit circle $S^1 := \{z \in \mathbb{C} : |z| = 1\}$.