Information for exam #1 in 421:01, fall 2005

Laplace transforms

<table>
<thead>
<tr>
<th>Function</th>
<th>Laplace Transform</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(t))</td>
<td>(F(s) = \int_{0}^{\infty} e^{-st} f(t) , dt)</td>
</tr>
<tr>
<td>(af(t) + bg(t))</td>
<td>(aF(s) + bG(s))</td>
</tr>
<tr>
<td>(t^n) (positive integer (n))</td>
<td>(\frac{n!}{s^{n+1}})</td>
</tr>
<tr>
<td>(e^{at})</td>
<td>(\frac{1}{s-a})</td>
</tr>
<tr>
<td>(\sin(kt))</td>
<td>(\frac{k}{s^2 + k^2})</td>
</tr>
<tr>
<td>(\cos(kt))</td>
<td>(\frac{s}{s^2 + k^2})</td>
</tr>
<tr>
<td>(e^{at} f(t))</td>
<td>(F(s-a))</td>
</tr>
<tr>
<td>(U(t-a)f(t-a))</td>
<td>(e^{-as} F(s))</td>
</tr>
<tr>
<td>(g(t)U(t-a))</td>
<td>(e^{-as} \mathcal{L}{g(t+a)})</td>
</tr>
<tr>
<td>(f'(t))</td>
<td>(sF(s) - f(0^+))</td>
</tr>
<tr>
<td>(f^{(n)}(t))</td>
<td>(s^n F(s) - s^{n-1} f(0) - \ldots - f^{(n-1)}(0))</td>
</tr>
<tr>
<td>((f * g)(t) = \int_{0}^{t} f(t - \tau) g(\tau) , d\tau)</td>
<td>(F(s)G(s))</td>
</tr>
<tr>
<td>(\delta(t-a))</td>
<td>(e^{-as})</td>
</tr>
<tr>
<td>(\int_{0}^{t} f(w) , dw)</td>
<td>(\frac{1}{s} F(s))</td>
</tr>
<tr>
<td>(t^n f(t))</td>
<td>((-1)^n \frac{d^n}{ds^n} F(s))</td>
</tr>
<tr>
<td>(f(t + T) = f(t)) (periodic)</td>
<td>(\frac{1}{1 - e^{-sT}} \int_{0}^{T} e^{-st} f(t) , dt)</td>
</tr>
</tbody>
</table>

\[
\sin(A + B) = \sin A \cos B + \cos A \sin B \\
\cos(A + B) = \cos A \cos B - \sin A \sin B
\]