13) 1. Suppose \(\{x_n\}, \{y_n\}, \) and \(\{z_n\} \) are real sequences, and that for all positive integers, \(n \), \(x_n \leq y_n \leq z_n \). If both \(\{x_n\} \) and \(\{z_n\} \) converge and have the same limit, \(L \), prove that \(\{y_n\} \) converges and its limit is \(L \). Answer Fix \(\varepsilon > 0 \). Since \(\lim_{n \to \infty} x_n = L \) there is \(N_x \in \mathbb{N} \) so that if \(n \geq N_x \), then \(|x_n - L| < \varepsilon \). Therefore for such \(n \), \(L - \varepsilon < x_n < L + \varepsilon \). Similarly, there is \(N_z \in \mathbb{N} \) so that if \(n \geq N_z \), then \(L - \varepsilon < z_n < L + \varepsilon \). Let \(N = \max(N_x, N_z) \). If \(n \geq N \), then \(L - \varepsilon < x_n \leq y_n \leq z_n < L + \varepsilon \), so that \(|y_n - L| < \varepsilon \). Thus \(\lim_{n \to \infty} y_n = L \).

13) 2. Suppose \((X, d)\) is a metric space. If \(P \) and \(Q \) are connected subsets of \(X \) with \(P \cap Q \neq \emptyset \), prove that \(P \cup Q \) is connected. Answer Suppose there is a separation, \(A \) and \(B \), of \(P \cup Q \). Then \(A \cup B = P \cup Q \), \(\overline{A} \cap B = \emptyset \), \(A \cap \overline{B} = \emptyset \), and neither \(A \) nor \(B \) is empty. Since \(P \cap Q \neq \emptyset \), there is \(x \in P \cap Q \) so that \(x \in A \) or \(x \in B \). We address the first case (the second is similar). Consider \(A \cap P \) and \(B \cap P \). Since \(\overline{A \cap P} \subset \overline{A \cap P} \subset \overline{A} \) and \(B \cap P \subset B \) and therefore \((A \cap P) \cap (B \cap P) = \emptyset \) (and similarly reversing the roles of \(A \) and \(B \)). But \(x \in A \), so since \(P \) is connected, \(P \subset A \). Similarly, \(Q \subset A \). Therefore \(B = \emptyset \) which is a contradiction, so no separation exists, and \(P \cup Q \) is connected.

15) 3. Suppose \((X, d)\) is a metric space.
 a) If \(A \) and \(B \) are subsets of \(X \), prove that \(\overline{A \cup B} = \overline{A} \cup \overline{B} \). Answer If \(x \in \overline{A} \), then given \(r > 0 \), \(N_r(x) \cap A \neq \emptyset \). That is, either \(x \in A \) or \(x \) is a limit point of \(A \). Since \(A \subset A \cup B \), if \(x \in \overline{A} \), then given \(r > 0 \), \(N_r(x) \cap (A \cup B) \neq \emptyset \) and thus \(x \in \overline{A \cup B} \). The case \(x \in \overline{B} \) is similar. Now if \(x \in \overline{A \cup B} \), consider \(N_r(x) \cap (A \cup B) = (N_r(x) \cap A) \cup (N_r(x) \cap B) \). This is not empty because \(x \) is an element of the closure of \(A \cup B \). If there is \(r > 0 \) so that \(N_r(x) \cap A = \emptyset \), there is always \(b \in B \) with \(b \in N_r(x) \). Also, if \(0 < s < r \), there must be \(b \in B \) with \(b \in N_s(x) \) or else \(N_s(x) \cap (A \cup B) = \emptyset \). Therefore \(x \in \overline{B} \). The situation if \(N_r(x) \cap B = \emptyset \) is similar, so either \(x \in \overline{A} \) or \(x \in \overline{B} \).
 b) Give an example to show that the closure of the union of a countable number of subsets of \(X \) need not be equal to the union of the closures of each of the sets. Answer Take \(X = \mathbb{R} \) with the usual metric, and \(A_j = \{1/j\} \) for positive integer \(j \). Here \(\overline{A_j} = A_j \) but \(0 \in \bigcup_{j=1}^{\infty} A_j \). So the union of the closures is not the same as the closure of the union.
 c) Give an example to show that \(\overline{A \cap B} \) and \(\overline{A} \cap \overline{B} \) need not be equal. Here \(A \) and \(B \) are subsets of \(X \). Answer Take \(X = \mathbb{R} \) with the usual metric. Suppose \(A = [0,1) \) and \(B = [1,2] \) so that \(\overline{A} = [0,1] \) and \(\overline{B} = [1,2] \). Therefore \(A \cap B = \emptyset \) so the closure is empty, but \(\overline{A} \cap \overline{B} = \{1\} \).

15) 4. Suppose \((X, d)\) is a metric space.
 a) If \(A \) is a subset of \(X \), prove that \(\text{diam}(A) = \text{diam}(\overline{A}) \). Comment \(\text{diam}(S) = \sup \{ d(x,y) : x, y \in S \} \) if \(S \subset X \). Answer Since \(A \subset \overline{A} \), the sup for \(\overline{A} \) is taken over more real numbers, and therefore \(\text{diam}(A) \leq \text{diam}(\overline{A}) \). If \(\text{diam}(A) < \text{diam}(\overline{A}) \), then there is \(\delta > 0 \) so that \(\text{diam}(A) + \delta < \text{diam}(\overline{A}) \) and therefore \(d(x,y) + \delta < \text{diam}(\overline{A}) \) for all \(x \) and \(y \) in \(A \). But the diameter of the closure is a sup, so there must be \(z \) and \(w \) in \(\overline{A} \) so that \(d(x,y) + \delta/2 < d(z,w) \) for all \(x \) and \(y \) in \(A \). Since \(z \in \overline{A} \) and \(w \in \overline{A} \), there are elements \(\hat{z} \) and \(\hat{w} \) in \(A \) with \(d(z,\hat{z}) < \delta/4 \) and \(d(w,\hat{w}) < \delta/4 \). Estimate:
 \[d(z,w) \leq d(z,\hat{z}) + d(\hat{z},\hat{w}) + d(\hat{w},w) < d(\hat{z},\hat{w}) + 2(\delta/4) = d(\hat{z},\hat{w}) + \delta/2. \]
 This contradicts a
previous assertion (with \(\hat{z} \) as \(x \) and \(\hat{w} \) as \(y \)) so the diameters must be equal. (The text’s proof is more economical.)

b) Give an example of a subset \(A \) of \(X \) with \(\text{diam}(A) \neq \text{diam}(A^o) \) and \(A^o \neq \emptyset \). (\(A^o \) is the interior of \(A \).) \textbf{Answer} Take \(X = \mathbb{R} \) with the usual metric. If \(A = [0,1] \cup \{2\} \), then \(A^o = (0,1) \), \(\	ext{diam}(A) = 2 \), and \(\text{diam}(A^o) = 1 \).

(15) 5. a) Suppose \((X,d) \) is a metric space, \(K \) is a compact subset of \(X \), \(U \) is an open subset of \(X \), and \(K \subset U \). Prove that there is \(r > 0 \) so that \(\bigcup_{k \in K} N_r(k) \subset U \). \textbf{Answer} Suppose \(k \in K \). Since \(U \) is open, there is \(r_k > 0 \) with \(N_{2r_k}(k) \subset U \). Then \(\{N_{r_k}(k)\}_{k \in K} \) is an open cover of \(K \) (with no 2 here!). \(K \) is compact so there is a finite subcover, \(\{N_{r_{k_j}}(k_j)\}_{1 \leq j \leq n} \).

Define \(r = \min\{r_{k_j} : 1 \leq j \leq n\} \). \(s \) is a positive real number since it is the minimum of a finite set of positive real numbers. If \(k \in K \), then there is \(k_j \) with \(d(k_j,k) < r \) (cover!). But \(N_r(k) \subset N_{2r}(k_j) \) (triangle inequality) and \(N_{2r}(k_j) \subset N_{2r_{k_j}}(k_j) \subset U \). So we have proved \(\bigcup_{k \in K} N_r(k) \subset U \).

\textbf{Alternative proof} Suppose no such \(r \) exists. Then for any positive integer \(n \) we can find \(k_n \in K \) and \(v_n \notin U \) with \(d(k_n,v_n) < \frac{1}{n} \). Since \(K \) is compact, the sequence \(\{k_n\} \) has a subsequence which converges to \(q \) in \(K \). But \(q \in U \) so there’s \(\delta > 0 \) with \(N_\delta(q) \subset U \). Find \(n \) so that \(\frac{1}{n} < \frac{\delta}{2} \) and \(d(k_n,q) < \frac{\delta}{2} \), possible since \(q \) is a subsequential limit of \(\{k_n\} \). Then (by \(\Delta \leq \delta \)) \(v_n \in N_{\frac{1}{n}}(k_n) \subset N_{\frac{\delta}{2}}(q) \subset N_\delta(q) \subset U \). But this contradicts \(v_n \notin U \).

b) Give an example to show that there can be a closed subset \(C \) of \(X \) and an open subset \(U \) of \(X \) with \(C \subset U \) so that there is no \(r > 0 \) with \(\bigcup_{x \in C} N_r(x) \subset U \). \textbf{Answer} Take \(\mathbb{R} \) with the usual metric and let \(C \) be the positive integers and \(U \) be the open set \(\bigcup_{n \in \mathbb{N}} \left(\left(\frac{1}{n}, \frac{n}{n+1} \right) \right) \). The Archimedean property implies there is no positive \(r \) with \(r < \frac{1}{n} \) for all \(n \in \mathbb{N} \), so this \(C \) is as desired. It is not difficult to find examples of \textit{connected} \(C \)'s and \(U \)'s satisfying this question in \(\mathbb{R}^2 \).

(14) 6. a) Prove directly from the definition of compactness that the half-open interval \((0,1] \subset \mathbb{R} \) is not compact. (\(\mathbb{R} \) has the usual topology.) \textbf{Answer} Take \(U_n = \left(\frac{1}{n}, 1 \right] \). Then \(\{U_n\}_{n \in \mathbb{N}} \) is an open cover of \((0,1] \) and \(U_{n+1} \supset U_n \). It is a cover by the Archimedean property. The cover “nests” since \(\frac{1}{n+1} < \frac{1}{n} \). If \(\{U_n\}_{1 \leq j \leq N} \) is a finite subcover, \(\bigcup_{1 \leq j \leq N} U_{n_j} = U_M \) where \(M = \max\{n_j : 1 \leq j \leq N\} \). But \(U_M = \left(\frac{1}{M}, 1 \right] \neq (0,1] \) by the Archimedean property.

b) Prove that a Cauchy sequence in a metric space is bounded. \textbf{Answer} Proved in class and in the text.

(15) 7. Suppose the following is known about three sequences:

If \(n \) is a positive integer, then \(|x_n - 2| < \frac{5}{n}, |y_n - 6| < \frac{20}{\sqrt{n}}, \) and \(|z_n - 5| < \frac{6}{n^2} \).

Then the sequences \(\{x_n\}, \{y_n\}, \) and \(\{z_n\} \) converge, and their respective limits are 2, 6, and 5.

The sequence whose \(n \)th term is \(x_n y_n - z_n \) converges and its limit is \(2 \cdot 6 - 5 = 7 \). Do not prove this, but find and verify a specific \(n \) so that \(|(x_n y_n - z_n) - 7| < \frac{1}{1,000} \). This need not be a “best possible” \(n \) but you must supply a specific \(n \) and a proof of your estimate. \textbf{Answer} \(|x_n y_n - z_n - 7| = |x_n y_n - z_n - (2 \cdot 6 - 5)| \leq |x_n y_n - 2y_n + 2y_n - 2 \cdot 6 + |z_n - 5| \leq |x_n - 2| |y_n| + |y_n - 6| + |z_n - 5| \). Suppose \(n \geq (100)^2 \). Then \(|y_n - 6| < \frac{20}{\sqrt{n}} = \frac{1}{100} \) so that \(|y_n| \leq |y_n - 6| + 6 < 7 \) as well as \(|y_n - 6| < \frac{20}{\sqrt{n}} \). Further, we know \(|x_n - 2| |y_n| < \frac{5}{n} \). Therefore \(|(x_n y_n - z_n) - 7| < \frac{35}{n} + \frac{20}{\sqrt{n}} + \frac{6}{n^2} \). Wow! Now take \(n = 10^{10} \) so \(\frac{35}{n} = \frac{35}{10^{10}} < \frac{1}{3,000}, \frac{20}{\sqrt{n}} = \frac{20}{10^{5}} < \frac{1}{3,000}, \) and \(\frac{6}{n^2} = \frac{6}{10^{20}} < \frac{1}{3,000} \). The total will be less than \(\frac{1}{1,000} \).