Due at the beginning of class, Thursday, September 25, 2008*

These problems accompany the text up to but not including the sections on compactness and connectivity.

- 1. (10 points) Here \mathbb{N} is the set of positive integers, $\{1, 2, 3, \ldots\}$. A positive integer sequence of positive integers (abbreviation here: PISPI) is any function $f: \mathbb{N} \to \mathbb{N}$. You may also use traditional sequence notation, $\{a_n\}_{n\in\mathbb{N}}$ with all the a_n 's in \mathbb{N} .
- a) Let \mathcal{U} (for "up") be the collection of all increasing PISPI's. That is, $f \in \mathcal{U}$ if and only if for all n and m in \mathbb{N} with $n \leq m$, we have $f(n) \leq f(m)$. Prove that \mathcal{U} is uncountable.

Hint Write \mathcal{U} or a subset as an image of an injection from a set which is uncountable.

b) Let \mathcal{D} (for "down") be the collection of all <u>decreasing PISPI's</u>. That is, $f \in \mathcal{D}$ if and only if for all n and m in \mathbb{N} with $n \leq m$, we have $f(n) \geq f(m)$. Prove that \mathcal{D} is countable.

Hint Write \mathcal{D} as a countable collection of certain simpler sets, each of which is countable.

- 2. (8 points) Suppose d(x,y) is a metric on X. Define D(x,y) by $D(x,y) = \min(d(x,y),1)$.
- a) Prove that D is a metric on X.
- b) Prove that the d-open sets are the same as the D-open sets. (There are two implications to prove: if $U \subset X$ is open using d, then it is open using D, and if $U \subset X$ is open using D, then it is open using d.)

The diameter of a metric space is the sup of the distance between pairs of points. It is an element of $[0, +\infty]$.

- c) Prove that any metric space has the same open sets as a metric space of finite diameter.
- 3. (10 points) This problem considers metrics on the set \mathbb{R}^2 . If $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$ are two points in \mathbb{R}^2 , $d_2(p_1, p_2) = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$ is the usual Euclidean metric on \mathbb{R}^2 . Do either the left-hand side or the right-hand side of what follows.

Define $d_1(p_1, p_2) = |x_1 - x_2| + |y_1 - y_2|$.

- a) Prove that d_1 is a metric on \mathbb{R}^2 .
- b) Draw a picture of the d_1 unit ball centered at (0,0).
- c) Find positive numbers C_1 and C_2 so that $C_1d_1(p_1, p_2) \leq d_2(p_1, p_2) \leq C_2d_1(p_1, p_2)$ for all points p_1 and p_2 in \mathbb{R}^2 .
- d) Prove that the d_1 -open sets are the same as the d_2 -open sets.

Comment d_1 is the taxical or L^1 metric.

Define $d_{\infty}(p_1, p_2) = \max(|x_1 - x_2|, |y_1 - y_2|).$

- a) Prove that d_{∞} is a metric on \mathbb{R}^2 .
- b) Draw a picture of the d_{∞} unit ball centered at (0,0).
- c) Find positive numbers C_1 and C_2 so that $C_1 d_{\infty}(p_1, p_2) \leq d_2(p_1, p_2) \leq C_2 d_{\infty}(p_1, p_2)$ for all points p_1 and p_2 in \mathbb{R}^2 .
- d) Prove that the d_{∞} -open sets are the same as the d_2 -open sets.

Comment d_{∞} is the box or L^{∞} metric.

Textbook problems Chapter 2: 6, 7, and 9 parts e) and f). All are worth 10 points.

^{*} I hope. Let's see how much we cover in class.