1. Suppose \(\{x_n\}, \{y_n\}, \text{ and } \{z_n\} \) are real sequences, and that for all positive integers, \(n \), \(x_n \leq y_n \leq z_n \). If both \(\{x_n\} \) and \(\{z_n\} \) converge and have the same limit, \(L \), prove that \(\{y_n\} \) converges and its limit is \(L \).

2. Suppose \((X, d)\) is a metric space. If \(P \) and \(Q \) are connected subsets of \(X \) with \(P \cap Q \neq \emptyset \), prove that \(P \cup Q \) is connected.

3. Suppose \((X, d)\) is a metric space.
 a) If \(A \) and \(B \) are subsets of \(X \), prove that \(A \cup B = \overline{A \cup B} \).
 b) Give an example to show that the closure of the union of a countable number of subsets of \(X \) need not be equal to the union of the closures of each of the sets.
 c) Give an example to show that \(\overline{A} \cap B \) and \(A \cap \overline{B} \) need not be equal. Here \(A \) and \(B \) are subsets of \(X \).

4. Suppose \((X, d)\) is a metric space.
 a) If \(A \) is a subset of \(X \), prove that \(\text{diam}(A) = \text{diam}(\overline{A}) \).
 Comment \(\text{diam}(S) = \sup \{d(x, y) : x, y \in S\} \) if \(S \subset X \).
 b) Give an example of a subset \(A \) of \(X \) with \(\text{diam}(A) \neq \text{diam}(A^o) \) and \(A^o \neq \emptyset \). (\(A^o \) is the interior of \(A \).)

5. a) Suppose \((X, d)\) is a metric space, \(K \) is a compact subset of \(X \), \(U \) is an open subset of \(X \), and \(K \subset U \). Prove that there is \(r > 0 \) so that \(\bigcup_{k \in K} N_r(k) \subset U \).
 b) Give an example to show that there can be a closed subset \(C \) of \(X \) and an open subset \(U \) of \(X \) with \(C \subset U \) so that there is no \(r > 0 \) with \(\bigcup_{x \in C} N_r(x) \subset U \).

6. a) Prove directly from the definition of compactness that the half-open interval \((0, 1] \subset \mathbb{R} \) is not compact. (\(\mathbb{R} \) has the usual topology.)
 b) Prove that a Cauchy sequence in a metric space is bounded.

7. Suppose the following is known about three sequences:

 If \(n \) is a positive integer, then \(|x_n - 2| < \frac{5}{n}, |y_n - 6| < \frac{20}{\sqrt{n}} \), and \(|z_n - 5| < \frac{6}{n^2} \).
 Then the sequences \(\{x_n\}, \{y_n\}, \text{ and } \{z_n\} \) converge, and their respective limits are 2, 6, and 5. The sequence whose \(n^{th} \) term is \(x_n y_n - z_n \) converges and its limit is \(2 \cdot 6 - 5 = 7 \). Do not prove this, but find and verify a specific \(n \) so that \(|(x_n y_n - z_n) - 7| < \frac{1}{1,000} \). This need not be a “best possible” \(n \) but you must supply a specific \(n \) and a proof of your estimate.
First Exam for Math 411

October 20, 2008

NAME ________________________________

Do all problems, in any order.

<table>
<thead>
<tr>
<th>Problem Number</th>
<th>Possible Points</th>
<th>Points Earned:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Total Points Earned: