Sources of the 403:02 final exam problems

These problems are mildly edited from the qualifying exams of the universities indicated.

Oklahoma 1. Let \(u(x, y) = x^3 + x - 3xy^2 \).
 a) Show that \(u(x, y) \) is harmonic on the complex plane.
 b) Find all harmonic conjugates of \(u(x, y) \).
 c) Find an analytic function \(f(z) \) so that \(\text{Re } f = u \) and find the Taylor series of \(f(z) \) about the point 0.

Purdue 2. Construct a one-to-one analytic map from \(Q = \{ z : |z| < 1 \) and \(\text{Im } z > 0 \} \) (the upper half of the unit disc) onto the unit disc, \(U = \{ z : |z| < 1 \} \). Show how the boundary of \(Q \) is mapped to the boundary of \(U \).

Temple 3. Use the Residue Theorem to compute \(\int_{-\infty}^{\infty} \frac{1}{(x^2 + 2x + 2)^2} \, dx \).

Berkeley 4. Prove that for any fixed complex number \(\zeta \), \(\frac{1}{2\pi} \int_{0}^{2\pi} e^{2\zeta \cos \theta} \, d\theta = \sum_{n=0}^{\infty} \left(\frac{\zeta^n}{n!} \right)^2 \).
 Hint Use the “dictionary” to convert this into a line integral and then use infinite series.

Temple 5. Let \(\mathbb{R}^- = \{ x \text{ is real and } x \leq 0 \} \). Suppose \(f(z) \) is analytic in \(\mathbb{C} \setminus \mathbb{R}^- \), and \(f(x) = x^x \) for real positive \(x \). Find \(f(i) \) and \(f(-i) \).
 Scoring 10 points for the values, and 10 points for explanation.

Temple 6. Show that if \(f(z) \) is analytic at \(a \) and \(g(z) = \frac{f(z) + af'(a) - zf'(a) - f(a)}{(z - a)^2} \) then \(g(z) \) has a removable singularity at \(z = a \). What value should be given to \(g(a) \) so that the extended function is analytic at \(a \)?

Johns 7. Find the number of zeros of the function \(f(z) = 2z^5 + 8z - 1 \) in the annulus \(1 < |z| < 2 \).

Hopkins

Missouri 8. Suppose \(|f(z)| \leq K \) on the circumference of a square whose side length is \(L \), and let \(z_0 \) be the center of the square. If \(f(z) \) is analytic in a domain containing the square, show that \(|f'(z_0)| \leq \frac{8K}{\pi L} \).
 Hint Use an integral formula.

Penn 9. Prove that if \(f(z) \) is an entire function and if there is a positive number \(M \) so that \(\text{Re } f(z) \leq M \) for all \(z \), then \(f(z) \) is constant.

Florida 10. Suppose the Bernoulli polynomials are defined by the Taylor expansion \(\frac{ze^{wz}}{e^z - 1} = \sum_{k=0}^{\infty} \frac{B_k(w)}{k!} z^k \). Find the first three Bernoulli polynomials, \(B_0(w) \), \(B_1(w) \), and \(B_2(w) \).