9/2/2006

Disconcerting problems about dimensions

Discussion and statement of the first problem

A sequence of bubbles is an infinite sequence of circles in the unit square of the plane, $[0,1] \times [0,1]$, whose interiors do not overlap. The center and radius of each circle should be specified in some algebraic or geometric fashion. A picture of some bubbles in one sequence appears to the right.

Is there a sequence of bubbles so that

written in complete English sentences.

- **i** the sum of the bubble areas is finite and
- ii the sum of the bubble circumferences is infinite?

What you should do

0 Either give an example of such a sequence of bubbles as explicitly as you can, or explain why no example exists. Your answer should contain a discussion supporting your assertion

Discussion and statement of the second problem

We begin with some terminology and notation.

• \mathbb{R}^n (pronounced "are en") is *n*-dimensional Euclidean space. A point p in \mathbb{R}^n is an *n*-tuple of real numbers: $p = (x_1, x_2, \ldots, x_n)$. The numbers x_j are called the coordinates of p. For example, $(1, 2, -3.8, 400, 5\pi)$ is a point in \mathbb{R}^5 .

• If $p = (x_1, x_2, ..., x_n)$ and $q = (y_1, y_2, ..., y_n)$ are two points in \mathbb{R}^n , the distance from p to q is defined to be $D(p,q) = \sqrt{\sum_{j=1}^n (x_j - y_j)^2}$. This is supposed to be a natural generalization of the usual formulas for distance in \mathbb{R}^2 and \mathbb{R}^3 : a repetition n times of the Pythagorean formula. For example, p = (1, 7, 8, -4) and q = (2, -3, 9, 9) are points in \mathbb{R}^4 , and the distance between them is $\sqrt{(1-2)^2 + (7-(-3))^2 + (8-9)^2 + (-4-9)^2} =$ $\sqrt{271} \approx 16.46208$. The formula for D(p,q) satisfies the usual rules for distances. The text uses |pq| to denote the distance from p to q.

• The origin in \mathbb{R}^n is $\mathbf{0} = (0, 0, \dots, 0)$, the *n*-tuple which is all 0's.

• The *n*-dimensional unit cube is the collection of points (x_1, x_2, \ldots, x_n) in \mathbb{R}^n satisfying all of these inequalities: $0 \le x_j \le 1$ for $1 \le j \le n$.

• The <u>corners</u> of the *n*-dimensional unit cube are the points (x_1, x_2, \ldots, x_n) where each x_i is either 0 or 1. Each of the n choices of the coordinates for a corner can be made independently and there are two alternatives for each coordinate. Therefore the *n*-dimensional unit cube has 2^n corners.

#1

Here are some familiar unit cubes, in 2 and 3 dimensions. The corners are marked with \bullet 's. The 2-dimensional cube has $2^2 = 4$ corners. The 3-dimensional cube has $2^3 = 8$ corners.

Do these exercises before starting the problem. The solutions should *not* be handed in! Bare answers ("spoilers") without explanation appear at the bottom of the page. I suggest you look at them *after* you try the problems.

Exercise 1 Suppose $\mathbf{1} = (1, 1, ..., 1)$, the *n*-tuple which is all 1's. Compute the distance between **0** and **1**, which are both corners of the *n*-dimensional cube. This should convince you that at least *part* of the *n*-dimensional cube "sticks out" far away from the origin.

Exercise 2 The 20-dimensional unit cube has $2^{20} = 1,048,576$ corners, far too many to list explicitly. You may need to use a calculator to answer the questions below.

- a) How many corners of the 20-dimensional cube have *all* 0's in their coordinates? How many have *exactly one* 1 in their coordinates? How many have *exactly two* 1's in their coordinates? How many have *exactly three* 1's in their coordinates? How many have *exactly four* 1's in their coordinates? [This starts out very easy, then becomes harder.]
- b) Use a)'s answer to find the total number of corners of the 20-dimensional unit cube which have 1's in <u>at most</u> four coordinates.
- c) Use b)'s answer to find the total number of corners of the 20-dimensional unit cube whose distance to **0** is at most 2. $(2 = \sqrt{1^2 + 1^2 + 1^2} + 1^2)$
- d) Use c)'s answer to find the <u>proportion</u> of the corners of the 20-dimensional unit cube which have distance to the origin <u>greater than</u> 2.

You may now believe unit cubes are quite weird when n is large. This is true:

Suppose A is a positive constant. Define #(n, A) to be the number of corners of the *n*-dimensional unit cube whose distance to **0** is greater than A. Then

$$\lim_{n \to \infty} \frac{\#(n,A)}{2^n} = 1$$

so "almost all" of the corners of the cube are eventually, as dimension grows, farther away from 0 than A.

What you should do

Verify the limit statement above. (You might want to actually prove that the proportion of corners whose distance is less than A has limit 0.) Use facts from calculus (quote them) comparing the asymptotic growth of polynomials and exponentials. Your answer should have a discussion supporting your assertion written in complete English sentences.

Hints

Begin with A = 2: in exercise 2, generalize to \mathbb{R}^n in place of \mathbb{R}^{20} . The limit for A = 2 compares the growth of a fourth degree polynomial with that of an exponential function. Then consider A = 78. The polynomial's degree is now 78^2 but the asymptotics (polynomial growth versus exponential growth) remain qualitatively the same.

Hand in a report on the general case, if possible. The course web page has links which may be useful about binomial coefficients and the symbols used for summation and product.