CD 1

Suppose the equations for the planes P_{1} and P_{2} are $2 x-2 y+3 z=3$ and $6 x+y-2 z=5$, respectively, where P_{1} and P_{2} are not parallel.
a) By definition, the angle between two planes is the angle between their normal vectors. The normal vectors for P_{1} and P_{2} are $\langle 2,-2,3\rangle$ and $\langle 6,1,-2\rangle$, respectively. The dot product and the angle Θ between nonzero vectors are related by

$$
\begin{aligned}
\cos (\Theta) & =\frac{\langle 2,-2,3\rangle \cdot\langle 6,1,-2\rangle}{\|\langle 2,-2,3\rangle\|\|\langle 6,1,-2\rangle\|}=\frac{2(6)+1(-2)+3(-2)}{\sqrt{ }(17) \cdot \sqrt{ }(41)} . \\
& \Rightarrow \Theta=\arccos (4 / \sqrt{ }(697)) .
\end{aligned}
$$

b) Just by looking at the equations for each plane, it appears that the point $(1,1,1)$ is on both P_{1} and P_{2}. To check...

$$
\begin{array}{ll}
\left.P_{1}\right) & 2(1)-2(1)+3(1)=2-2+3=3 \\
\left.P_{2}\right) & 6(1)+(1)-2(1)=6+1-2=5
\end{array}
$$

c) We already have a point, ($1,1,1$), so we only need a direction vector to parameterize the line of intersection of P_{1} and P_{2}. The cross product of their normal vectors will give us this direction vector.

$$
\begin{aligned}
& \langle 2,-2,3\rangle \times\langle 6,1,-2\rangle=\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
2 & -2 & 3 \\
6 & 1 & -2
\end{array} \\
& =((-2)(-2)-3(1)) \cdot \mathrm{i}-(2(-2)-3(6)) \cdot \mathrm{j}+(2(1)-(-2)(6)) \cdot \mathrm{k} \\
& =1 \cdot \mathrm{i}+22 \cdot \mathrm{k}+14 \cdot \mathrm{k}=\langle 1,22,14\rangle
\end{aligned}
$$

Now we have both a point and a direction, so we can parameterize the line of intersection of P_{1} and P_{2} by...

$$
c(t)=(t+1,22 t+1,14 t+1)
$$

