4
The solid region described by $0 \leq r \leq \sqrt{ }(1-z), 0 \leq \Theta \leq \pi$, and $0 \leq z \leq 1$ is...


Evaluating the triple integral...

$$
\begin{aligned}
J & =\int_{0}^{1} \int_{0}^{\pi} \int_{0}^{\sqrt{1-z}}\left(z^{3} \sin \theta\right) r d r d \theta d z \\
& =\int_{0}^{1} \int_{0}^{\pi}\left(\left.\left(\frac{r^{2}\left(z^{3} \sin \theta\right)}{2}\right)\right|_{0} ^{\sqrt{1-z}}\right) d \theta d z \\
& =\int_{0}^{1} \int_{0}^{\pi}\left(\frac{\left(z^{3}-z^{4}\right) \sin \theta}{2}\right) d \theta d z \\
& =\int_{0}^{1}\left(\left.\left(\frac{-\left(z^{3}-z^{4}\right) \cos \theta}{2}\right)\right|_{0} ^{\pi}\right) d z \\
& =\int_{0}^{1}\left(z^{3}-z^{4}\right) d z=\left.\left(\frac{z^{4}}{4}-\frac{z^{5}}{5}\right)\right|_{0} ^{1} \\
& =\frac{1}{4}-\frac{1}{5}=\frac{1}{20}
\end{aligned}
$$

