Suppose L₁ is described parametrically by $c_1(t) = (3t + 1, 7t + 2, -t + 1)$ and L₂ is described parametrically by $c_2(s) = (2s - 2, s + 6, -2s + 6)$.

a) These lines intersect each other when their x,y,and z components are equal. That is...

x)	3t + 1 = 2s - 2	\Rightarrow	s = (3/2)(t + 1)		
y)	7t + 2 = s + 6	\Rightarrow	7t + 2 = (3/2)(t + 1) + 6	\Rightarrow	t = 1
Z)	-t + 1 = -2s + 6	\Rightarrow	-(1) + 1 = -2s + 6	\Rightarrow	s = 3

Plugging (t = 1) into $c_1(t)$ yields (4,9,0). Similarly, plugging (s = 3) into $c_2(s)$ yields (4,9,0). Therefore, we find that $c_1(t)$ and $c_2(s)$ intersect at (4,9,0).

b) The direction vectors of the parametrizations $c_1(t)$ and $c_2(s)$ are, respectively, $\langle 3, 7, -1 \rangle$ and $\langle 2, 1, -2 \rangle$. By taking the cross product of these two vectors we get a normal vector perpendicular to both L₁ and L₂. So...

$$\langle 3, 7, -1 \rangle \times \langle 2, 1, -2 \rangle = \det \begin{array}{c} i & j & k \\ 3 & 7 & -1 \\ 2 & 1 & -2 \end{array}$$

=
$$(7(-2) - 1(-1)) \cdot i - (3(-2) - 2(-1)) \cdot j + (3(1) - 7(2)) \cdot k$$

= $-13 \cdot i + 4 \cdot k - 11 \cdot k = \langle -13, 4, -11 \rangle$.

Therefore, we have a point on both lines, (4,9,0), and a normal vector, $\langle -13, 4, -11 \rangle$, so our equation for the plane containing L₁ and L₂ is...

$$-13 \cdot (x - 4) + 4 \cdot (y - 9) - 11 \cdot (z - 0) = 0$$
, or
 $-13x + 4y - 11z = -16$