
Interpolating factorials

Here’s a simple integral which we can compute and then complicate:

∫ A

0

e−xdx = −e−x

]A

0

= −e−A − (−e0) = 1 − e−A

If we let A → ∞, then e−A → 0 so the improper integral
∫ ∞

0
e−xdx converges, and it has

value 1. We’ll use this in combination with a reduction formula. If n is a positive integer
consider:

∫ A

0

xne−xdx = −xne−x

]A

0

+ n

∫ A

0

xn−1e−xdx

∫

u dv = uv −
∫

v du

u = xn

dv = e−xdx

}{

du = nxn−1dx

v = −e−x

Again two −’s make a +: the − from v and the − from the integration by parts formula
create a + in our formula. Since n is a positive integer, both xne−x and xn−1e−x are
continuous in [0, A]. There is no “singularity” at 0. The lower limit of the ] term contributes
nothing, since 0ne−0 is 0 if n is a positive integer.

What happens as A → ∞? The upper limit of the ] term gives −Ane−A. This has
limit 0 since the exponential function grows faster than any power (just apply l’Hôpital’s
Rule n times).

If
∫ ∞

0
xn−1e−xdx exists, then this argument shows that

∫ ∞

0
xne−xdx exists, and that

∫ ∞

0
xne−xdx = n

∫ ∞

0
xn−1e−xdx. We know the value of this integral when n = 0 by the

computation above. For larger integer n we now see

n! =

∫ ∞

0

xne−xdx

when n is a positive integer.

x5e−x in the interval [0, 20]
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Some simple facts about xne−x on [0,∞): it is always non-negative and is 0 only at
0. Its limit as x → ∞ is 0. It has one critical point, a maximum, at x = n where its value
is

(

n

e

)n
. It has two inflection points located at n ±

√
n.

If n is positive, then the integral
∫ ∞

0
xne−xdx converges because when x ≥ 1 we can

compare it to the integral of a higher integer power which we already know converges. If
we agree to make the following definition:

If n ≥ 0 then n! =

∫ ∞

0

xne−xdx

then we first observe that this definition agrees with the usual one when n is a positive
integer. Also, the integration by parts argument applies to show that n! = n · (n − 1)!
when n ≥ 1.

One specific factorial value is
(

1
2

)

! =

∫ ∞

0

√
x e−xdx

What is this number? We can try to approximate it by splitting the integral up into an
infinite “tail” which is small and standard definite integral which can be approximated
numerically.

∫ ∞

0

√
x e−xdx =

∫ 20

0

√
x e−xdx +

∫ ∞

20

√
x e−xdx

The infinite tail can be overestimated, and then the larger integral can be explicitly
computed with one use of the reduction formula (the steps involving limits evaluating
improper integrals are omitted):

∫ ∞

20

√
x e−xdx <

∫ ∞

20

xe−xdx = −xe−x − e−x

]∞

20

=
21

e20
≈ 4.238 · 10−8

Dropping the infinite tail will give an error which won’t affect the first seven decimal places

of the whole integral. Approximation by Maple tell us that
∫ 20

0

√
xe−xdx is about .8862269

so therefore
∫ ∞

0

√
xe−xdx ≈ .8862269

But (.8862269)2 ·4 = 3.141592473 is interestingly near π. If what this suggests is true then
we should believe that

(

1
2

)

! =
(

1
2

)

·
√

π as was declared in the ball computation. I’d like
to prove this now.

An obvious preliminary substitution makes
∫ ∞

0

√
xe−xdx slightly easier to work with:

x = s2 so dx = 2s ds. The integral then becomes
∫ ∞

0
2s2 e−s

2

ds. Another application of
integration by parts will turn this into one of the most famous integrals in mathematics.
I’ll be careful, and regard the improper integral as a limit of the proper integrals below:

∫ A

0

2s2 e−s
2

ds = s · −e−s
2

]A

0

+

∫ A

0

e−s
2

ds

∫

u dv = uv −
∫

v du
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u = s

dv = e−s
2

2s ds

}{

du = ds

v = −e−s
2

The ] term is 0 when s = 0 and has limit 0 as A → ∞ since e−A
2

dies off much more

quickly than A grows. Our original integral has now been changed to
∫ ∞

0
e−s

2

ds. We’ll
double it using the evenness of s2 and instead try to show that

∫ ∞

−∞

e−s
2

ds =
√

π

The function e−s
2

arises everywhere in probability and statistics. The presence of so
many π’s in statistical formulas is because of the value of this integral. Here’s a picture of
this famous “bell-shaped” curve:
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It has a maximum at 0 and inflection points at ± 1√
2
.

There are many ways to conclude that I =
∫ ∞

−∞
e−s

2

ds is
√

π. Here is one of them.

Revolve the curve w = e−s
2

for s ≥ 0 about the w−axis. The resulting solid of
revolution has a volume, V , which can be computed with “thin shells”.

V =

∫ ∞

0

2πse−s
2

ds = 2π · −
1

2
e−s

2

]∞

0

= π
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A quarter of the revolved curve, with a vertical strip ds thick forming a thin shell

Now let’s compute V another way. We can slice the solid by planes perpendicular to
the s−axis. We’ll get a profile curve which will vary with s. A piece of the volume will
be obtained by multiplying that profile curve by ds. What is the profile curve? A picture
may help.

0

1

w

s t

The profile curve looks a great deal like the original bell curve rescaled. This is correct,
as the following more precise analysis shows. What’s the height of the revolved curve over a
point (s0, t0)? The height depends only on the distance of the point to the origin because
the surface is composed of circles centered at (0, 0). The height at (s0, t0) is the same

height as the curve w = e−s
2

has at s∗ =
√

(s0)2 + (t0)2. Here is a picture looking down

on the surface.
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0

So the height of the surface at (s0, t0) is e
−
(√

(s0)2+(t0)2
)

2

= e−(s0)2−(t0)
2

. The curve

over the line s = s0 has height over the point (s0, t) the value e−(s0)
2−t

2

= e−(s0)
2 · e−t

2

.

Therefore the profile curve is the original curve rescaled: it is multiplied by e−(s0)
2

. The
area must be I, the original integral we want to compute, multiplied by e−(s0)

2

. Let’s move
from the fixed cross-section at s0 to any cross-section. The volume slice we want, which
is the cross-sectional area times ds, will be I · e−s

2

ds. We’ll need to add these pieces of
volume up from s = −∞ to s = ∞. Therefore

V =

∫ ∞

−∞

I · e−s
2

ds = I ·
∫ ∞

−∞

e−s
2

ds = I2

Since we already know that V = π, we’ve confirmed that I =
√

π.
This rather involved demonstration of the value of I is an adaption of another way

of computing I, using double integrals and polar coordinates. This method and others
rely on the multiply/add property of the exponential function: ea · eb = ea+b. One of my
colleagues says the tricks involved in evaluating this integral are almost “criminal acts”
because they are so special and so clever.

History and notation This integral interpolation for factorials was discovered and in-
vestigated long ago. The resulting function was named the Gamma function, and the
definition was given a shift in its argument. The Gamma function, Γ(n) is defined by

Γ(n) =

∫ ∞

0

xn−1e−xdx

so that Γ(n) = (n − 1)! when n is a positive integer. Please argue with Leonhard Euler
(1707–1783) if you’re unhappy about the Gamma function.
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