1(a) $e^{e-1} / 2 . ~ \lim _{x \rightarrow e} \frac{e^{x}-x^{e}}{(x-e)^{2}} \stackrel{L^{\prime}}{(\text { Hosp. }} \lim _{x \rightarrow e} \frac{e^{x}-e x^{e-1}}{2(x-e)} \stackrel{L^{\prime}}{=}{ }^{\text {Hosp. }} \lim _{x \rightarrow e} \frac{e^{x}-e(e-1) x^{e-2}}{2}=$
$\left(e^{e}-e(e-1) e^{e-2}\right) / 2=\left(e^{e}-(e-1) e^{e-1}\right) / 2=e^{e-1} / 2$.
1(b) 1. Let $y=(1+x)^{1 / x}$. Taking $\ln (), \ln y=\ln \left((1+x)^{1 / x}\right)=\frac{\ln (1+x)}{x}$. Then, $\lim _{x \rightarrow \infty} \ln y=$ $\lim _{x \rightarrow \infty} \frac{\ln (1+x)}{x} \stackrel{L^{\prime}}{x} \stackrel{\text { Hosp. }}{=} \lim _{x \rightarrow \infty} \frac{1 /(1+x)}{1}=0$. Thus, as $x \rightarrow \infty, \ln y \rightarrow 0$. Thus, $y=e^{\ln y} \rightarrow e^{0}=1$.
1(c) 1. $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-\sqrt{x^{2}-x}\right)=\lim _{x \rightarrow \infty}\left(\left(\sqrt{x^{2}+x}-\sqrt{x^{2}-x}\right) \cdot \frac{\left(\sqrt{x^{2}+x}+\sqrt{x^{2}-x}\right)}{\left(\sqrt{x^{2}+x}+\sqrt{x^{2}-x}\right)}\right)=$ $\lim _{x \rightarrow \infty}\left(\frac{\left(x^{2}+x\right)-\left(x^{2}-x\right)}{\sqrt{x^{2}+x}+\sqrt{x^{2}-x}}\right)=\lim _{x \rightarrow \infty} \frac{2 x}{\sqrt{x^{2}+x}+\sqrt{x^{2}-x}}=\lim _{x \rightarrow \infty} \frac{2 x}{\sqrt{x^{2}(1+1 / x)}+\sqrt{x^{2}(1-1 / x)}}=$ $\lim _{x \rightarrow \infty} \frac{2 x}{x(\sqrt{1+1 / x}+\sqrt{1-1 / x})}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{1+1 / x}+\sqrt{1-1 / x}}=\frac{2}{1+1}=1$, as $\lim _{x \rightarrow \infty} 1 / x=0$.
2 (a) $\frac{d}{d x}\left(\frac{x^{2}+x+1}{x^{3}+x}\right)=\frac{\left(x^{3}+x\right)(2 x+1)-\left(x^{2}+x+1\right)\left(3 x^{2}+1\right)}{\left(x^{3}+x\right)^{2}}=$
$\frac{\left(2 x^{4}+2 x^{2}+x^{3}+x\right)-\left(3 x^{4}+3 x^{3}+3 x^{2}+x^{2}+x+1\right)}{\left(x^{3}+x\right)^{2}}=\frac{-x^{4}-2 x^{3}-2 x^{2}-1}{\left(x^{3}+x\right)^{2}}$.
$2(\mathrm{~b}) \frac{d}{d x}\left(x \tan \left(e^{-x}\right)\right)=1 \cdot \tan \left(e^{-x}\right)+x \frac{d}{d x}\left(\tan \left(e^{-x}\right)\right)=\tan \left(e^{-x}\right)+x \sec ^{2}\left(e^{-x}\right) \frac{d}{d x}\left(e^{-x}\right)=$ $\tan \left(e^{-x}\right)+x \sec ^{2}\left(e^{-x}\right)\left(-e^{-x}\right)=\tan \left(e^{-x}\right)-x e^{-x} \sec ^{2}\left(e^{-x}\right)$.
2(c) Let $y=\left(1+x+x^{2}\right)^{x}$. Taking $\ln ()$, $\ln y=\ln \left(1+x+x^{2}\right)^{x}=x \ln \left(1+x+x^{2}\right)$. Thus, differentiating with respect to $x$, it follows that $\frac{1}{y} \cdot \frac{d y}{d x}=\ln \left(1+x+x^{2}\right)+x \cdot \frac{d}{d x}\left(\ln \left(1+x+x^{2}\right)\right)=$ $\ln \left(1+x+x^{2}\right)+x \cdot \frac{1+2 x}{1+x+x^{2}}=\ln \left(1+x+x^{2}\right)+\frac{x+2 x^{2}}{1+x+x^{2}}$.
Thus, $\frac{d y}{d x}=\left(\ln \left(1+x+x^{2}\right)+\frac{x+2 x^{2}}{1+x+x^{2}}\right)\left(1+x+x^{2}\right)^{x}$.
$2(\mathrm{~d}) \sqrt{1+x^{4}}$, by the Fundamental Theorem of Calculus.
3 (a) Suppose that $f$ is continuous everywhere.
Then, $\lim _{x \rightarrow 1} f(x)$ exists and equals $f(1)$. In particular, the left and right hand limits at $x=1$ are equal. Thus, $\lim _{x \rightarrow 1^{+}} f(x)=$ $\lim _{x \rightarrow 1^{-}} f(x)$. Near $x=1$, to the right of $1, f(x)=1 / x$, and to the left of $1, f(x)=x^{2}+A x+B$. It follows that: $\lim _{x \rightarrow 1^{+}} 1 / x=$ $\lim _{x \rightarrow 1^{-}}\left(x^{2}+A x+B\right)$, or $1=1+A+B$, or $A+B=0$.


Similarly, $\lim _{x \rightarrow(-1)^{+}}\left(x^{2}+A x+B\right)=\lim _{x \rightarrow(-1)^{-}} 1 / x$. Thus, $1-A+B=-1$, or $-A+B=-2$. Since $B=-A,-2 A=-2$, or $A=1$. Also, $B=-1$.
$3(\mathrm{~b})$ The graph appears above and to the right. The function fails to be differentiable at $x=1$. If $-1 \leq x \leq 1, f^{\prime}(x)=2 x+1$. If $x<1, f^{\prime}(x)=-1 / x^{2}$. At $x=-1$, both are -1 , and $f$ is differentiable at $x=-1$. At all other points, $f$ is differentiable.
4. Here, $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=$
$\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{(2 x+2 h+1)^{2}}-\frac{1}{(2 x+1)^{2}}\right)=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{(2 x+1)^{2}-(2 x+2 h+1)^{2}}{(2 x+1)^{2}(2 x+2 h+1)^{2}}\right)=$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{\left(4 x^{2}+4 x+1\right)-\left(4 x^{2}+4 h^{2}+1+8 x h+4 x+4 h\right)}{(2 x+1)^{2}(2 x+2 h+1)^{2}}\right)=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-4 h^{2}-8 x h-4 h}{(2 x+1)^{2}(2 x+2 h+1)^{2}}\right) \\
& =\lim _{h \rightarrow 0} \frac{-4 h-8 x-4}{(2 x+1)^{2}(2 x+2 h+1)^{2}}=\frac{-8 x-4}{(2 x+1)^{4}}=\frac{-4(2 x+1)}{(2 x+1)^{4}}=\frac{-4}{(2 x+1)^{3}} .
\end{aligned}
$$

5 (a) Differentiating with respect to $x: 3 x^{2}+6 x y+3 x^{2} \frac{d y}{d x}+3 y^{2} \frac{d y}{d x}=0$, or
$\left(3 x^{2}+3 y^{2}\right) \frac{d y}{d x}=-3 x^{2}-6 x y$. Thus, $\frac{d y}{d x}=\frac{-3 x^{2}-6 x y}{3 x^{2}+3 y^{2}}=-\frac{x^{2}+2 x y}{x^{2}+y^{2}}$.
$5(\mathrm{~b})$ A point on the tangent line is $(1,1)$. To find the slope of the tangent line we evaluate the derivative at $(1,1)$. Letting $x=1$ and $y=1$ in the formula for $d y / d x$, then $d y / d x=(-1-2) / 2=$ $-3 / 2$. Thus, the equation of the tangent line is $y-1=(-3 / 2)(x-1)$, or $y=(-3 x+5) / 2$.
$5(\mathrm{c})$ The tangent line is horizontal if $d y / d x=0$, i.e., $x^{2}+2 x y=0$, or $x(x+2 y)=0$. Thus, either $x=0$ or $x=-2 y$.

If $x=0$, then from $x^{3}+3 x^{2} y+y^{3}=5, y^{3}=5$, or $y=\sqrt[3]{5}$. Thus, $(x, y)=(0, \sqrt[3]{5})$.
If $x=-2 y$, then from $x^{3}+3 x^{2} y+y^{3}=5,(-2 y)^{3}+3(-2 y)^{2} y+y^{3}=5$, or $(-8+12+1) y^{3}=5$, or $5 y^{3}=5$, or $y=1$. Then $x=-2$.

Thus, either $(x, y)=(0, \sqrt[3]{5})$ or $(x, y)=(-2,1)$.
6. Here, the volume, $V$, and the surface area, $S$, of a sphere of radius $r$ are given by the formulas: $V=\frac{4}{3} \pi r^{3}, S=4 \pi r^{2}$. In addition, by hypothesis, $\frac{d V}{d t}=5$ and $\frac{d S}{d t}=3$. Differentiating the formulas with respect to $t, \frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}=4 \pi r^{2} r^{\prime}$, and $\frac{d S}{d t}=8 \pi r \frac{d r}{d t}=8 \pi r r^{\prime}$. Thus, $5=4 \pi r^{2} r^{\prime}$ and $3=8 \pi r r^{\prime}$. Dividing, $5 / 3=\left(4 \pi r^{2} r^{\prime}\right) /\left(8 \pi r r^{\prime}\right)$, or $5 / 3=r / 2$. Thus, $r=10 / 3$ (inches).
7 (a) $y=\ell_{1}(x)=-3+(x+2) / 2=x / 2-2, y=\ell_{2}(x)=-3+x+2=x-1$.
$7(\mathrm{~b})$ Suppose that $-2<x$. By the Mean Value Theorem, $f(x)-f(-2)=f^{\prime}(c)(x+2)$, with $-2<c<x$. Since $-2<c, 1 / 2 \leq f^{\prime}(c) \leq 1$. Since $-2<x, 0<x+2$. Multiplying by $x+2,(x+2) / 2 \leq f^{\prime}(c)(x+2) \leq(x+2)$. Thus, $(x+2) / 2 \leq f(x)-f(-2) \leq(x+2)$, or $f(-2)+(x+2) / 2 \leq f(x) \leq f(-2)+(x+2)$. Thus, replacing $f(-2)$ by -3 , it follows that $-3+(x+2) / 2=\ell_{1}(x) \leq f(x) \leq \ell_{2}(x)=-3+(x+2)$.
8. At $x=-5$ and $x=3, f^{\prime}(x)$ changes sign from positive to negative, and thus a local maximum occurs at $x=-5$ and $x=3$.

At $x=0$ and $x=6, f^{\prime}(x)$ changes sign from negative to positive, and thus a local minimum occurs at $x=0$ and $x=6$.

At $x=-3$ and $x=1, f^{\prime}(x)$ does not change sign, and neither occurs.
9 (a) Here, $y=f(x)=\frac{1}{x}+\ln x$. The domain is $(0, \infty)$, since $\ln x$ is only defined if $x>0$.
As $x \rightarrow 0^{+}, y \rightarrow \infty-\infty$, and to evaluate the limit, we collect the terms together. Then, $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(\frac{1+x \ln x}{x}\right)$. Observe that $\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}}\left(\frac{\ln x}{1 / x}\right)$. As this is $\frac{-\infty}{\infty}$, we use L'Hospital's rule to get: $\lim _{x \rightarrow 0^{+}}\left(\frac{1 / x}{-1 / x^{2}}\right)=\lim _{x \rightarrow 0^{+}}-x=0$. Thus, as $x \rightarrow 0^{+}, x \ln x \rightarrow 0$. Then, as $x \rightarrow 0^{+}, 1+x \ln x \rightarrow 1+0=1$. It follows that $\lim _{x \rightarrow 0^{+}}\left(\frac{1+x \ln x}{x}\right)=+\infty$. Thus, the graph has a vertical asymptote at $x=0$.

Since $\lim _{x \rightarrow \infty}\left(\frac{1}{x}+\ln x\right)=\infty$, the graph has no horizontal asymptote.

Differentiating, $\frac{d y}{d x}=-\frac{1}{x^{2}}+\frac{1}{x}=\frac{-1+x}{x^{2}}$. Thus, if $d y / d x=0, x=1$, and the only critical point is $x=1$. Also, $\frac{d^{2} y}{d x^{2}}=\frac{2}{x^{3}}-\frac{1}{x^{2}}=\frac{2-x}{x^{3}}$. Thus, if $d^{2} y / d x^{2}=0, x=2$, and the only inflection point is $x=2$.

Since $\lim _{x \rightarrow 0^{+}} f(x)=\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty$, the function has a minimum at $x=1$. Thus, as $f(1)=1$, the range of the function is $[1, \infty)$. The graph of the function appears to the right.


9(b) For this function, the domain is all real numbers and there are no vertical asymptotes. Also, $d y / d x=3 x^{2} e^{-x^{2} / 2}+x^{3}(-x) e^{-x^{2} / 2}=\left(3 x^{2}-x^{4}\right) e^{-x^{2} / 2}$. Thus, if $d y / d x=0$, then $x^{4}-3 x^{2}=$ $x^{2}\left(x^{2}-3\right)=0$. It follows that $x=0$ or $x= \pm \sqrt{3}$. Thus, the critical points of the function are $x=0$ and $x= \pm \sqrt{3}$.

Similarly, $d^{2} y / d x^{2}=\left(6 x-4 x^{3}\right) e^{-x^{2} / 2}+\left(3 x^{2}-x^{4}\right)(-x) e^{-x^{2} / 2}=\left(x^{5}-7 x^{3}+6 x\right) e^{-x^{2} / 2}$. Thus to be an inflection point, $x$ must satisfy the equation $x^{5}-7 x^{3}+6 x=0$, or $x\left(x^{2}-1\right)\left(x^{2}-6\right)=0$. Thus, the inflection points are $x=0, x= \pm 1$, and $x= \pm \sqrt{6}$.
Since $\lim _{x \rightarrow \infty} x^{3} e^{-x^{2} / 2}=\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x^{2} / 2}}=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{-x e^{x^{2} / 2}}=$ $\lim _{x \rightarrow \infty} \frac{-3 x}{e^{x^{2} / 2}}=\lim _{x \rightarrow \infty} \frac{-3}{-x e^{x^{2} / 2}}=0$, the horizontal asymptote of the graph is the line $y=0$.

From the graph, the maximum value of the function occurs at $x=\sqrt{3}$ and is $M=3^{3 / 2} e^{-3 / 2}=(3 / e)^{3 / 2}$. Likewise, the minimum is $-3^{3 / 2} e^{-3 / 2}=-(3 / e)^{3 / 2}$.
Thus, the range is the interval $\left[-(3 / e)^{3 / 2},(3 / e)^{3 / 2}\right]$ $=[-1.159418,1.159418]$.


10(a) Since the linear approximation at $x=a$ of $f$ is $L(x)=f(a)+f^{\prime}(a)(x-a)$, with $a=1$, $f(1)=3, f^{\prime}(1)=-2, L(x)=3-2(x-1)$.
10(b) Setting $x=1.05, L(1.05)=3-2(1.05-1)=2.9$
10 (c) Here $g(x)=x^{2} f(x)$. Then $g(1)=1^{2} f(1)=3$. Also $g^{\prime}(x)=2 x f(x)+x^{2} f^{\prime}(x)$. Setting $x=1$, $g^{\prime}(1)=2 f(1)+f^{\prime}(1)=2 \cdot 3-2=4$. Thus, denoting the linear approximation of $g(x)$ at $a=1$ by $M(x)$, then $M(x)=3+4(x-1)$.
11(a) $\int \frac{x^{2}+x+1}{\sqrt{x}} d x=\int\left(x^{3 / 2}+x^{1 / 2}+x^{-1 / 2}\right) d x=(2 / 5) x^{5 / 2}+(2 / 3) x^{3 / 2}+2 x^{1 / 2}+C$.
11(b) With $u=x+1, d u=d x$. Thus, $\int \sqrt{x+1} d x=\int \sqrt{u} d u=(2 / 3) u^{3 / 2}+C=$
$(2 / 3)(x+1)^{3 / 2}+C$. Thus, $\int_{0}^{1} \sqrt{x+1} d x=\left.(2 / 3)(x+1)^{3 / 2}\right|_{0} ^{1}=(2 / 3)\left(2^{3 / 2}-1\right)$.
11(c) Take $u=x^{3}$. Then, $d u=3 x^{2} d x$, or $x^{2} d x=(1 / 3) d u$.
Then, $\int x^{2} \sin \left(x^{3}\right) d x=\int(1 / 3) \sin u d u=-(1 / 3) \cos u+C=-(1 / 3) \cos \left(x^{3}\right)+C$.
11(d) Let $u=\ln x$. Then, $\frac{d u}{d x}=\frac{1}{x}$ and $d u=\frac{d x}{x}$. It follows that
$\int \frac{\cos (\ln x)}{x} d x=\int \cos (u) d u=\sin (u)+C=\sin (\ln x)+C$.
Thus, $\int_{1}^{e} \frac{\cos (\ln x)}{x} d x=\left.\sin (\ln x)\right|_{1} ^{e}=\sin (\ln e)-\sin (\ln 1)=\sin (1)-\sin (0)=\sin (1)$.

12(a) Here, $a(t)=\frac{d^{2} x}{d t^{2}}=-24 t^{2}+96 t$. Thus, $v(t)=\frac{d x}{d t}=\int\left(-24 t^{2}+96 t\right) d t=-8 t^{3}+48 t^{2}+C$, where $C$ is a constant. Since $v(0)=0,0=-8 \cdot 0^{3}+48 \cdot 0^{2}+C$, and $C=0$.
Thus, $v(t)=\frac{d x}{d t}=-8 t^{3}+48 t^{2}$, and so, $x(t)=\int\left(-8 t^{3}+48 t^{2}\right) d t=-2 t^{4}+16 t^{3}+D$, with $D$ a constant. Since $x(0)=0,0=0+0+D$, or $D=0$. It follows that $x(t)=-2 t^{4}+16 t^{3}$.
12(b) The particle goes down the $x$-axis until $d x / d t=0$. Since $d x / d t=-8 t^{3}+48 t^{2}, d x / d t=0$ if $t=0$ or $t=6$. At $t=0, x=0$, and at $t=6, x=864$. Thus, $x=864$ is as far as the particle goes down the positive $x$-axis.
13. Let $(x, y)$ be the upper right hand corner of the trapezoid. Then, the top side of the trapezoid has width $2 x$, the bottom side has width $2 a$, and the height is $y$. Thus, if $A$ is the area $A=(2 x+2 a) y / 2=(x+a) y$. Since $(x, y)$ is a point on the semi-circle, $y=\sqrt{a^{2}-x^{2}}$ and $A=(x+a) \sqrt{a^{2}-x^{2}}$
Then, $\frac{d A}{d x}=\sqrt{a^{2}-x^{2}}+(x+a)\left(\frac{-x}{\sqrt{a^{2}-x^{2}}}\right)=$

$\frac{\left(a^{2}-x^{2}\right)-x(x+a)}{\sqrt{a^{2}-x^{2}}}=\frac{-2 x^{2}-a x+a^{2}}{\sqrt{a^{2}-x^{2}}}=\frac{-2\left(x^{2}+(a / 2) x-a^{2} / 2\right)}{\sqrt{a^{2}-x^{2}}}=\frac{-2(x+a)(x-a / 2)}{\sqrt{a^{2}-x^{2}}}$. Thus, the critical points of $A$ are $x=-a$ and $x=a / 2$. Since the problem only makes sense for $0 \leq x \leq a$, the relevant critical point is $x=a / 2$.

At the endpoint $x=0, A(0)=a^{2}$. At the critical point $x=a / 2, A(a / 2)=3 \sqrt{3} a^{2} / 4$. Finally, at the endpoint $x=a, A(a)=0$. Thus, the maximum value is $A=3 \sqrt{3} a^{2} / 4$, and it occurs at $x=a / 2$.
14. The area of a semi-circle of radius 1 is $\pi / 2$. The trapezoidal regions below $[2,5]$ and $[7,10]$ each have total area 2 .
(i) $\pi / 2$
(ii) $\pi / 2-2$
(iii) $\pi-2$
(iv) $\pi-4$
(v) $\pi / 2-3$
15. Since $[1,3]$ is divided into four subintervals of equal length, the width of each subinterval is $\Delta x=(3-1) / 4=1 / 2$. Writing 1 as $2 / 2$ and 3 as $6 / 2$, the subintervals are:
$[2 / 2,3 / 2],[3 / 2,4 / 2],[4 / 2,5 / 2],[5 / 2,6 / 2]$. Here, also $f(x)=\frac{1}{x}$ and $\Delta x=1 / 2$.
15(a) The left endpoints of the subintervals are: $2 / 2,3 / 2,4 / 2,5 / 2$. Thus, the Riemann sum is:
$(1 / 2)(f(2 / 2)+f(3 / 2)+f(4 / 2)+f(5 / 2))=\frac{1}{2}\left(\frac{2}{2}+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{77}{60}$.
$15(\mathrm{~b})$ The right endpoints of the subintervals are: $3 / 2,4 / 2,5 / 2,6 / 2$. Thus, the Riemann sum is: $(1 / 2)(f(3 / 2)+f(4 / 2)+f(5 / 2)+f(6 / 2))=\frac{1}{2}\left(\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+\frac{2}{6}\right)=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{57}{60}$.
$15(\mathrm{c})$ The midpoints of the subintervals are: $5 / 4,7 / 4,9 / 4,11 / 4$. Thus, the Riemann sum is: $(1 / 2)(f(5 / 4)+f(7 / 4)+f(9 / 4)+f(11 / 4))=\frac{1}{2}\left(\frac{4}{5}+\frac{4}{7}+\frac{4}{9}+\frac{4}{11}\right)=2\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}\right)=\frac{3776}{3465}$.
16. The parabola $y=-x^{2}+5 x-3$ crosses the line $y=x$ at those points $x$ where $-x^{2}+5 x-3=x$, or $x^{2}-4 x+3=0$. Thus, factoring, $(x-1)(x-3)=0$, or $x=1$ and $x=3$. Thus, the area is:
$\int_{1}^{3}\left(\left(-x^{2}+5 x-3\right)-(x)\right) d x=\int_{1}^{3}\left(-x^{2}+4 x-3\right) d x=$
$\left.\left(-x^{3} / 3+2 x^{2}-3 x\right)\right|_{1} ^{3}=4 / 3$.


