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Lecture 15: Pigeons and patterns

15.1 Pigeonholes

The simplest way to show that patterns must appear uses the pigeonhole principle.

The Pigeonhole Principle

If there are more pigeons than pigeonholes, one
pigeonhole must contain at least two pigeons.

The following application is based on contents of a webpage at the University of
Manchester Institute of Science and Technology.

Some multiple of 12345 has a decimal expansion which
can be written using only the digits 0 and 1.

Why is this true? Consider the 12346 numbers A1, A2, A3, . . . A12346 defined by the

formula An =

n 1’s
︷ ︸︸ ︷

111 . . . 111 (in decimal notation). Further define the Rn’s to be the re-
mainders gotten from dividing the An’s by 12345. These integer remainders are scattered
between 0 and 12344, a total of 12345 possibilities. These possibilities are the pigeonholes.

There are 12346 remainders: the pigeons. The pigeonhole principle implies that at
least two of these Rn’s are equal. So we may suppose that there are remainders Ra and Rb

where a > b so that Ra = Rb. Then Aa − Ab is divisible by 12345 because its remainder,

the difference Ra −Rb, is 0. What is Aa −Ab? It must be

(a−b) 1’s
︷ ︸︸ ︷

111 . . . 111

b 0’s
︷ ︸︸ ︷

000 . . . 000
It isn’t too difficult to write a computer program which implements the scheme out-

lined above. For example, here’s a multiple of 13 which is all 0’s and 1’s: 85470 · 13 =
11 11110. But the number found may not be the smallest answering the question: 77 ·13 =
1001 is also a solution which is quite a bit smaller! More critically, the process outlined
above shows that certain numbers exist, but it doesn’t find them. A direct search for the
multiple of 12345 using the idea above could involve manipulation of numbers with 12345
digits, which is somewhat intimidating, even for a computer.

Exercise Find an explicit multiple of 12345 which has only 0’s and 1’s in its decimal
expansion.

15.2 M&M’s

Here’s a question involving pattern inevitability taken from a webpage at Illinois State.

The colors of M&M’s are red, green, brown, yellow, blue, and orange.
How many M&M’s would you have to grab from a package to guarantee
that you have grabbed at least three of one color?

Certainly a “random” three M&M’s taken could have the same color. Let’s analyze that
probability. Here we use information supplied by Mars, Inc. of Hackettstown, New Jersey.

Brown

Fact: 30% of all M&M’s are brown.
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Consequence: if we choose three different M&M’s independently, then (.3)3 = .027
of the time we’d have three brown M&M’s.

Yellow & Red

Facts: 20% of all M&M’s are yellow; 20% of all M&M’s are red.
Consequences: the chance of getting three yellow M& M’s is (.2)3 = .008 and the
chance of getting three red M& M’s is the same.

Green & Orange & Blue

Facts: 10% of all M&M’s are green; the same is true for orange and for blue.
Consequences: The chance of getting three greens is (.1)3 = .001, and this is the
same as the chance of getting three oranges or three blues.

Let’s assume that the manufacturer has supplied correct information and that the
selection of the three M&M’s is independent. Then the event of selecting three of the same
color splits into six disjoint events, one for each color. The probability of selecting three of
the same color is therefore .027 + 2(.008) + 3(.001) = .046, roughly one chance in twenty.
This reasoning is, of course, probabilistic. Suppose we wanted to be certain of getting
M&M’s with the same color.

We could grab more. If we took 7 M&M’s, then at least one color would appear twice.
This is a consequence of the Pigeonhole Principle: the pigeonholes would be the color of
the candy taken, and the pigeons would be each M&M. Taking 7 M&M’s with 6 colors
available is the same as having 7 “pigeons” (the 7 chosen M&M’s) and 6 pigeonholes,
one hole for each color chosen: two M&M’s of any 7 must have the same color. Similar
reasoning shows that any group of 13 M&M’s must have three of the same color.

Exercise Carefully compute the probability of three M&M’s of one color being grabbed
in a random handful of N , where 3 ≤ N ≤ 13. For example, the probability is .8 when
N = 12. The probability will grow from .046 (N = 3) to 1 (N = 13).

The pigeonhole principle can produce mandatory “structure” in randomness.
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Lecture 16: Friends, strangers, and coloring graphs

16.1 Mutual friends and mutual strangers

Me

Betty

Carol

Don

Ed

Albert
Let’s suppose that any pair of people in the

world are either mutual friends or mutual strangers.
Take any six people in the world. Must there be a
group of these people (more than two!) who are all
mutual friends or mutual strangers?

Suppose I (in the lovely picture: “Me”) am one
of the people, and the others are Albert, Betty, Carol,
Don, and Ed. Some of these five people are strangers
to me, and some are my friends. By the pigeonhole
principle, at least three of these must be one of these
two alternatives (strangers to me or friends of mine).
Let me assume that three are friends, and that Albert

and Betty and Carol are these friends.

Consider Albert and Betty and Carol who could all be unacquainted with each other.
So these people then would be mutual strangers. If this assumption is false, at least one
pair of them, say Albert and Betty, would be friends. Then Albert and Betty and Me would
be three mutual friends.

We could continue backtracking the assumptions that were made. What would happen
if there were three people who were strangers to Me ? Similar reasoning will again provide
three mutual friends or three mutual strangers.

Don

Carol

Ed

Albert

Betty

What if we considered a collection of five people? Look
at the diagram displayed. The solid lines indicate that the
people are mutual friends, while the dashed lines imply they
are mutual strangers (better thought: “friends who haven’t
met”). Check carefully: each of the 10 relationships is shown.
There is no triple of mutual friends or mutual strangers.

Here is the major conclusion:

Any group of six people must include a triple of mutual friends or a
triple of mutual strangers but there can be groups of five people having
no triple of mutual friends and no triple of mutual strangers.

16.2 Graphs and coloring four

We just considered what could happen at a party with a group of people. We were
interested in whether a small number of them were mutual friends or strangers. We are
actually studying graphs*.

* Mathematicians tend to overload simple words, making them serve several distinct
meanings. The objects called graphs here are not the same as the graphs considered in
analytic geometry, such as “the graph of y = x2.” Sorry about this.
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A B

Here a graph will be a collection of vertices (the plural
form of “vertex”) and edges between pairs of vertices. One
graph is shown here. The vertex set of this graph has 7 el-
ements, {A,B,C,D,E, F,G}; the edge set has 8 elements,
{(A,B), (B,C), (B,G), (C,D), (C,E), (D,E), (D,G), (E,G)}.

The vertex B is a member of three edges, and we say that
the degree of B is 3: deg(B) = 3. The degree of F is 0. The
picture is a symbolic representation of the graph so the edges
(C,E) and (D,G) don’t really meet or intersect.

The concept of a graph has many variations (directed graph: edges with an orientation;
weighted graph: edges with associated costs; a multigraph: more than one edge may
connect vertices, etc.). There is also much specialized terminology.

Many simple questions having difficult answers have been asked about graphs. One
of the most famous optimization problems asks about graphs. Suppose there is a list of
cities and distances between them is given. Finding a tour visiting each of the cities with
minimum travel distance is the Traveling Salesman Problem. This is certainly a difficult
(NP!) problem. It has many applications*.

Here we will look at complete graphs. A graph is complete if every pair of distinct
vertices is connected by an edge. The complete graph on n vertices is called Kn.

K4 is shown at the left. It has 4 vertices and it has 3+2+
1 = 6 edges. The picture at the right shows this sum: 3
counts the edges connecting a first vertex to all the other
edges (edges drawn with standard thickness); 2 comes from
connecting another vertex to all vertices except the first
(edges drawn with increased thickness); 1 (the most heavily
drawn edge) is from the next-to-last vertex, connecting it
to the last vertex.

K4 1+2+3=6

More generally, the number of edges in Kn is n(n−1)
2 . You can see this in several ways:

by looking at the pairs of vertices (n times n−1, since no vertex is connected to itself) and
dividing by 2 (since the order of the pairs doesn’t matter). Or you can count downwards

and add: n + (n− 1) + (n− 2) + . . . + 2 + 1 = n(n−1)
2 .

We will color the edges of Kn’s. Here I want to use only two colors, say red (indicated
with ) and blue (indicated with - - - - ). Since each edge can be colored one of these
2 colors, Kn can be colored 2(# of decisions) = 2n(n−1)/2 different ways. In the previous
section, we actually verified the following statement:

If n ≥ 6 then every 2-colored Kn contains a monochromatic tri-
angle (K3). If n ≤ 5, there are colorings of Kn’s not containing
a monochromatic triangle.

Is there a similar statement about K4’s? That is, can we find a threshold number N

so that there is some 2-colored KN−1 which contains no monochromatic K4 and so that
every 2-colored KN must contain at least one monochromatic K4? Statements of this type
are not easy to check because the number of possible 2-colorings is very large.

* See http://www.math.princeton.edu/tsp/ for example.
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Check all 70!

For example, here’s one 2-colored K8. It has
28 edges and no monochromatic K4. To check
this claim, look at all of the possible K4’s and
see if they have one color. How many K4’s are
there? First find the number of distinct 4-tuples
of vertices: you can choose the first vertex 8 ways,
the second 7, then 6, and then 5. The result is
1680. But we get the same K4 if these 4 vertices
are chosen in any order. The number of orders of
4 objects is 4 · 3 · 2 · 1 = 24. We need to check
only 70 different K4’s*. You may know this is the
binomial coefficient

(
8
4

)
.

How hard is it to check for monochromatic K4’s in a 2-colored KN? We might need
to check the coloring of every K4 in the given KN . There are

(
N
4

)
different K4’s: that is, we

just pick 4 vertices and look at the 6 edges connecting these vertices. The number of ways of

choosing 4 objects from N objects is
(
N
4

)
= N(N−1)(N−2)(N−3)

1·2·3·4 = N4−6N3+11N2−6N
24 . This is

a polynomial of degree 4. We could search one 2-colored KN for monochromatic K4’s with a
program having four “nested” loops. This is not really too bad. For example, when N = 15,
there are 1,365 K4’s. But . . . to check that every 2-colored KN has a monochromatic K4,
we would need to check 2N(N−1)/2 different 2-colored KN ’s. When N = 15, there are
2105 = 40 56481 92073 03340 84789 45025 72032 ≈ 4 · 1031 different colorings to check. A
direct check is not feasible even with huge computer resources (the return of P versus NP!).
We have two tasks:

I Find N large enough so that every 2-colored KN has a monochromatic K4. It isn’t
even clear that there is such an N , and therefore exhaustive searching may not succeed.

II For suitable N ’s, exhibit 2-colored KN ’s without any monochromatic K4’s. Certainly
N = 8 works here (the example above!). But can larger N ’s be used and still not
necessarily have monochromatic K4’s? Even here searching be impractical.

How can we find a monochromatic K4? Let’s start with a very BIG 2-colored KN

and try to find a K4 with only one color. We search for a monochromatic K4 in a greedy
way. First, pick any vertex: call it x1. Look at the edges coming out of x1: there are N−1
of them. Some are red and some are blue. There are at least 1

2 (N − 1) edges of one color,
because if the number of edges of both colors were < 1

2 (N − 1), then the total number of
edges would be less than N − 1. Let’s see: call that color C1, and collect all the vertices
which connect to x1 with edges of that color. Look at the complete graph (with assigned
edge colorings!) on those other vertices. It is a KN1

whose internal edges are colored red
and/or blue. The “and/or” is used to emphasize that we have no control over the internal
edges of KN1

. Also, N1 ≥ 1
2 (N − 1).

* 70 = 1680
24 .
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KN

x1
KN1

Here is an attempt to illustrate what has just been de-
scribed. The lighter colored polygonal region “is” KN . Then
x1 is inside KN , and is connected by edges of all one color
to KN1

, which takes up at least half of KN . We don’t know
whether the edges connecting the vertices of KN1

to x1 are red
or blue, only that they are all the same color.

Now pick a vertex x2 in KN1
. Look at the edges coming out of x2 in KN1

: there are
N1 − 1 of them. There are at least 1

2 (N1 − 1) edges of one color, because if the number
of edges of both colors were < 1

2 (N1 − 1), then the total number of edges would be less
than N1 − 1. Call that color C2. I am not asserting it is the same as C1! Collect all the
vertices in KN1

which are at the other end of these edges coming out of x2. Look at the
complete graph (with edge colorings!) on those other vertices. It is a KN2

whose internal
edges again are colored red and/or blue. Also, N2 ≥ 1

2 (N1 − 1).

KN

KN1

KN1

x1

x2

a copy of 

KN2

This picture tries to show the “evolution” from KN to KN1
to KN2

. Symbolically we
could write:

x1 in KN
C1⇒ KN1

and x2 in KN1

C2⇒ KN2

where each time the number of vertices of the Ksomething is at least one-half the number
of vertices of the previous graph. We’ll worry about the specific N needed later.

Let’s continue the process. We get

x1
C1⇒ KN1

and x2
C2⇒ KN2

and x3
C3⇒ KN3

and x4
C4⇒ KN4

and x5
C5⇒ KN5

where we stop after five evolutions or reductions. Each of the colors (the Cj ’s) is either red
or blue, and there are five of them. The pigeonhole principle again implies that at least
one color (say red for specificity) must appear at least three times (since 2 · 2 = 4 < 5
both can’t appear less than three times!). Again, let us assume for specificity that C2, C3,
and C5 are red. The logic will be similar for any other triple.

Now we will discover a red K4 in this KN . Take y in KN5
. Since C5 is red, (x5, y) is

red. But the creation of the new graphs is by shrinking, so y is also in KN3
and so (x3, y)

is red. Similarly, y is in KN2
and (x2, y) is red. Since x5 is in KN4

, it must be in KN3

and therefore (x3, x5) is red. (x2, x3) and (x2, x5) are also red with the same arguments.
So the vertices {x2, x3, x5, y} and the associated edges give a monochromatic (in this case,
red) K5.

We must go back and check on the size of N . Since KN5
is not empty (we need a y in

it!), the size of KN5
is at least 1. Then KN4

should be at least 3, since we create KN5
by
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taking out x5 and being greedy. KN3
must have at least 7 vertices, since we take out x4

and are greedy. Backwards again: KN2
must have at least 15 vertices. And again: KN1

must have at least 31 vertices. And finally: KN must have at least 63 vertices.

If N ≥ 63, then every 2-colored KN contains a monochromatic K4.

A logical scheme following this outline verifies a more general statement.

If N ≥ 22(n−1) − 1, then every 2-colored KN contains a monochromatic Kn.
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Lecture 17: Ramsey and five

17.1 Definitions and R5

The nth Ramsey number, which will be called Rn here, is the “threshold number”
for n. It is the smallest integer so that every 2-colored KN with N ≥ Rn must have a
monochromatic Kn. The procedure outlined above actually shows that Rn exists, which
is not obvious, and that Rn ≤ 22(n−1) − 1.

We have shown that R4 ≤ 63 and our earlier example shows that R4 ≥ 9. In fact,
R4’s exact value is known: 18. This takes more work, though.

The exact value of R5 is not known*. I will show you an underestimate of R5 using
a technique which is ludicrously simple (maybe) and fiendishly clever (really). It is rela-
tively new and has become a powerful method for analyzing problems in many areas of
theoretical computer science. It is also useful in aspects of theoretical physics, chemistry,
and bioinformatics (computational biology).

Let’s begin with an uncolored KN . Let’s flip coins to color the edges of this KN . So
we flip a fair coin (equal probability for heads and tails) repeatedly. Color an edge red
if the coin lands heads, and blue if it shows a tail. Suppose that S is one of the K5’s in
KN . What’s the chance that S has all edges colored blue? S has 10 edges either because
(
5
2

)
= 10 or because 1 + 2 + 3 + 4 = 10. If the flips are fair and independent, the chance

that S is all blue is 1
210 . Of course, S could also have all of its edges colored red, with the

same probability. Therefore the chance that S is monochromatic is 1
29 = 1

512 . So far this
is exactly like our analysis of trying to get three M&M’s of one color. We computed the
chance of the event that the three M&M’s were green, then the chance they were red, etc.,
and finally we added these chances. This was simple because there was no overlapping of
the random choices involved in these events. That is, there was no interaction between the
events. But this situation is more complicated. An example may indicate the complexity.

D

E

C

B

A
D

E

C

F
G

D

E

C

B

A

F
G

Seven vertices with
some edges in a KN

This is S1 This is S2

What’s shown is supposed to be seven vertices in a very big KN . I haven’t drawn every
edge in order to keep the picture simpler. One K5 is S1 with vertex set {A,B,C,D,E},
and another is S2 with vertex set {C,D,E, F,G}. Each K5 has 10 edges. S1 and S2

* The best current information seems to be that R5 is between 43 and 49.
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share three edges: (C,D), (C,E), and (D,E). The chance that S1 is monochromatic is
1
29 and the chance that S2 is monochromatic is 1

29 . A careful computation shows that the
chance that both of them are monochromatic is 1

216 . So the chance that at least one is
monochromatic is less than the sum of the chances that each of them is monochromatic:

P (S1 is monochromatic) + P (S2 is monochromatic) =

P (At least one is monochromatic) + P (Both are monochromatic) .

But we don’t need to be so careful if we want a quick overestimate. We will forget
the “fine structure” here and only use this idea, which overcounts:

The chance that at least one K5 is monochromatic will be overestimated
by the sum of the chances that any K5 is monochromatic.

The number of K5’s in KN is
(
N
5

)
= N(N−1)(N−2)(N−3)(N−4)

5! = N5−10N4+35N3−50N2+24N
120 .

Each one separately has monochromatic probability 1
29 = 1

512 . So we can overestimate the

probability of having at least one monochromatic K5 by* N5−10N4+35N3−50N2+24N
61440 . When

N = 11, this number is approximately .90234, less than 1. If every 2-colored K11 had a
monochromatic K5, this number would have to be 1. So there must be some 2-colored K11

having no monochromatic K5, and R5 ≥ 12.
This underestimate ofR5, showing the existence of a 2-colored K11 with no monochro-

matic K5, is an example of “the probabilistic method”. If this all seems clear, try the
following exercise.

Exercise Find an explicit 2-coloring of K11 which has no monochromatic K5.

Comment There are 462 K5’s in a K11, and there are 255 = 36 02879 70189 63968 ≈ 3·1021

2-colorings of K11. This search space is very large. How can you find the 2-coloring
requested? An exhaustive search may not quickly produce an example. Our computations
assert that a “random” 2-coloring will be satisfactory about 10% of the time (actually more
because we got an overestimate). Here’s one strategy: first write a program to check for
the presence of monochromatic K5’s in a 2-colored K11. Then create and test some random
2-colorings of K11 (you’ll need at least a reasonable source of randomness!). You may fail
to get a satisfactory coloring, but as you choose more and more random colorings, your
chance of success at least once is close to certainty. That’s because repeated failure for t

attempts has approximate probability ≤ (.9)t which, as t grows, approaches 0 rapidly. For
example, there’s less than 1 chance in 40,000 of failure in 100 random attempts to create a
suitable coloring. A direct search with carefully structured colorings, starting with all red
edges, etc., may take a while to report success: your search may be stuck in an untypical
corner of the exponentially large sample space, where there are many monochromatic K5’s.
“Random” will likely be faster than “deterministic” in this problem!

17.2 Thanks, a further remark, and a charming story

Conversations with David Galvin, János Komlós, and Jason Tedor helped me prepare
this material. Dr. Komlós is a faculty member in mathematics and computer science at
Rutgers and is one of the world’s leading authorities on probabilistic methods. Mr. Tedor

* 61440 = 120 · 512.
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is currently a graduate student in mathematics at Rutgers, while, as previously mentioned.
Dr. Galvin recently graduated.

The methods given here for over- and underestimates of Ramsey numbers Rn are, for
n large, quite close to the best currently known! They can be used to show that Rn is
always between 4n and

(√
2
)n

.
Joel Spencer (in [6]) tells this anecdote about Paul Erdős, who was one of the greatest

and strangest mathematicians of the twentieth century (see [8] and [9]). Erdős essentially
invented the probabilistic method.

Erdős asks us to imagine an alien force, vastly more powerful than us, landing
on Earth and demanding the value of R5 or they will destroy our planet. In that
case, he claims, we should marshall all our computers and all our mathematicians
and attempt to find the value. But suppose, instead, that they ask for R6. In
that case, he believes, we should attempt to destroy the aliens.
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