Bitstream exercises in class

Background assumptions Our messages in bitstreams will be a succession of words which will be one of three types (the given percentage frequencies are approximate):

- 50% of the words are 1010101010. This is 10 bits long, alternating 1's and 0's. Call it \mathbf{P}.
- 25% of the words are 1111111. This is 7 bits long, all 1's. Call it \mathbf{Q}.
- 25% of the words are 000000 . This is 6 bits long, all 0's. Call it R.

We'll call bitstreams composed of these words, sentences. The sentence RQPR is:
00000011111111010101010000000
Bitstreams will divided into groups of five bits each to make it easier to refer to parts of them. Then the sentence above is written:

00000011111111010101010000000

Problem 1

Write the following sentence in terms of \mathbf{P}, \mathbf{Q}, and \mathbf{R}.

```
1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 ~ 0 0 0 1 0 ~ 1 0 1 0 1 0 1 0 1 1 ~ 1 1 1 1 1 ~ 1 0 1 0 1 0 1 0 1 0 ~
```


Problem 2

Here is a sentence which has been xored with a pseudorandom bitstream with approximately 10% 1's. Write the original sentence in terms of \mathbf{P}, \mathbf{Q}, and \mathbf{R}.
110111110101010101010001010001010100001000010101010101111011

Problem 3

The following bitstream is two sentences xored together. Write the original sentences in terms of \mathbf{P}, \mathbf{Q}, and \mathbf{R} as well as you can.
010101011110101010000000000101010000010101001010101111010101

Problem 4

A pseudorandom bitstream with approximately $50 \% 1$'s and $50 \% 0$'s has been created. Two different sentences have been xored with it and the results are shown. Write the original sentences in terms of \mathbf{P}, \mathbf{Q}, and \mathbf{R} as well as you can.

```
11110 00111 00101 10010 10010 10011 11101 11110 00100 10111 01110 11011 100
11110 00111 10000 10010 11000 00110 10111 10100 10101 11101 00100 01001 00
```


Some statistics about English

The web page
http://www.cmb.ac.lk/academic/Science/Computer/dscs/courses/Computer/Msc/DSandC/english.htm contains the following table, which the web page quotes from Computer Networks by A. S. Tanenbaum (Prentice-Hall, 1989).

Letters			Bigrams		Trigrams		Words	
E	13.05	TH	3.16	THE	4.72	THE	6.42	
T	9.02	IN	1.54	ING	1.42	OF	4.02	
O	8.21	ER	1.33	AND	1.13	AND	3.15	
A	7.81	RE	1.30	ION	1.00	TO	2.36	
N	7.28	AN	1.08	ENT	0.98	A	2.09	
I	6.77	HE	1.08	FOR	0.76	IN	1.77	
R	6.64	AR	1.02	TIO	0.75	THAT	1.25	
S	6.46	EN	1.02	ERE	0.69	IS	1.03	
H	5.85	TI	1.02	HER	0.68	I	0.94	
D	4.11	TE	0.98	ATE	0.66	IT	0.93	
L	3.60	AT	0.88	VER	0.63	FOR	0.77	
C	2.93	ON	0.84	TER	0.62	AS	0.76	
F	2.88	HA	0.84	THA	0.62	WITH	0.76	
U	2.77	OU	0.72	ATI	0.59	WAS	0.72	
M	2.62	IT	0.71	HAT	0.55	HIS	0.71	
P	2.15	ES	0.69	ERS	0.54	HE	0.71	
Y	1.51	ST	0.68	HIS	0.52	BE	0.63	
W	1.49	OR	0.68	RES	0.50	NOT	0.61	
G	1.39	NT	0.67	ILL	0.47	BY	0.57	
B	1.28	HI	0.66	ARE	0.46	BUT	0.56	
V	1.00	EA	0.64	CON	0.45	HAVE	0.55	
K	0.42	VE	0.64	NCE	0.45	YOU	0.55	
X	0.30	CD	0.59	ALL	0.44	WHICH	0.53	
J	0.23	DE	0.55	EVE	0.44	ARE	0.50	
Q	0.14	RA	0.55	ITH	0.44	ON	0.47	
Z	0.09	RO	0.55	TED	0.44	OR	0.45	

The web page cited has many other numbers about English which you might find interesting. There are also many other references for English and other languages.

Answers to the bitstream problems in class

Background assumptions Our messages in bitstreams will be a succession of words which will be one of three types (the given percentage frequencies are approximate):

- 50% of the words are 1010101010. This is 10 bits long, alternating 1's and 0's. Call it \mathbf{P}.
- 25% of the words are 1111111 . This is 7 bits long, all 1's. Call it \mathbf{Q}.
- 25% of the words are 000000 . This is 6 bits long, all 0's. Call it R.

We'll call bitstreams composed of these words, sentences. The sentence RQPR is:
00000011111111010101010000000
Bitstreams will divided into groups of five bits each to make it easier to refer to parts of them. Then the sentence above is written:

```
00000011111111010101010000000
```


Problem 1

Write the following sentence in terms of \mathbf{P}, \mathbf{Q}, and \mathbf{R}.

```
101010101011111111010101010000000101010101011111111010101010
```


Answer to problem 1

This is just direct translation and the answer is PQPRPQP.

Problem 2

Here is a sentence which has been xored with a pseudorandom bitstream with approximately 10% 1's. Write the original sentence in terms of \mathbf{P}, \mathbf{Q}, and \mathbf{R}.
110111110101010101010001010001010100001000010101010101111011

Answer to Problem 2

This is the pseudorandom bitstream used in the problem:
001000000000000000000100000100000001001000000000000000000100 and here's the original bitstream:

```
1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 ~ 0 1 0 1 0 ~ 1 0 1 0 1 ~ 0 1 0 1 0 ~ 1 0 0 0 0 ~ 0 0 0 1 0 ~ 1 0 1 0 1 ~ 0 1 0 1 1 ~ 1 1 1 1 1 ~
```

so that the bitstream is QPPPRPQ. One can guess this (and, really, this is only a guess!) by looking at the patterns. The first 7 bits in the bitstream of the problem statement are 1101111 and since every bit there has a 90% chance of being correct, it is rather unlikely that this is a result of xoring with either \mathbf{P} or \mathbf{R}. For example, if we had started with \mathbf{R}, we'd need to change from 000000 to 110111 and that would mean a total of 5 out of 6 "bitflips" - there's only one chance out of 100,000 (that's 10^{5}) of that happening. If we had started with \mathbf{P}, we'd need to change from 1010101 to 11011 11. The number of bitflips here would be 4 . The chance of that occurring is one chance out of 10,000 . Compare that with starting with \mathbf{Q}, where only one bitflip (one chance of 10) is necessary.

Lesson from problem 2

In real life, people look very carefully at the statistics of the pseudorandom bitstreams that are used. Even small systematic biases (1% more 1's than 0's, for example) can be easily exploited by cryptanalysis. Much more complex statistics than simple counting are explored. Correlations (relationships between the bits) are investigated quite closely.

Problem 3

The following bitstream is two sentences xored together. Write the original sentences in terms of \mathbf{P}, \mathbf{Q}, and \mathbf{R} as well as you can.
010101011110101010000000000101010000010101001010101111010101

Answer to problem 3

The two bitstreams which were created are
101010101011111111010101010000000101010101011111111010101010
which is PQPRPQP and
111111110101010101010101010101010101000000010101010101111111 which is QPPPRPQ.
The difference in length and pattern make it fairly easy to learn what the two bitstreams are. The solutions written above are not the only possibilities. The sequences PQPPRQP and QPPRPPQ give the same answer. There are also other valid answers. Cryptanalysis needs some inspired guessing or further information about either the meaning of the "language" or about the relative frequencies of \mathbf{P} coming after \mathbf{Q} versus \mathbf{Q} coming after \mathbf{P} : more statistical information. Such information is certainly recorded about any language of interest.

Lesson from problem 3

Many people think that a one-time pad constructed from a common text (such as a novel or a book of poems or a dictionary) is a good idea. This example should show that the statistics of a natural language are so rough (non-random) that natural language should never be used as the source of a random bitstream.

Problem 4

A pseudorandom bitstream with approximately 50% 1's and $50 \% 0$'s has been created. Two different sentences have been xored with it and the results are shown. Write the original sentences in terms of \mathbf{P}, \mathbf{Q}, and \mathbf{R}.

```
11110 00111 00101 10010 10010 10011 11101 11110 00100 10111 01110 11011 100
11110 00111 10000 10010 11000 00110 10111 10100 10101 11101 00100 01001 00
```


Answer to problem 4

This is the pseudorandom bitstream used in the problem
and following are the two original sentences (in order).
101010101010101010101111111111111110101010100000001111111000000 This sentence is PPQQPRQR.
10101010100000001010101010101010101000000010101010101010101010
This sentence is PRPPRPP.
The xor of the two sentences is
00000000001010100000010101010101010010101000101010010101001010
which must be the same as the xor of the two encrypted sentences. Why?

Digression on \oplus (the xor symbol)

\oplus is addition mod 2 . So the entire definition of \oplus is given by these equations:

$$
0 \oplus 0=0 ; \quad 0 \oplus 1=1 ; \quad 1 \oplus 0=1 ; \quad 1 \oplus 1=0
$$

\oplus is used extensively in cryptography because $a \oplus b \oplus b=a$ for any a 's and b 's, so we can do the following:

End of digression on \oplus (the xor symbol)
If a is a bit from the first sentence, A is a corresponding bit (in the same position) from the second sentence, and b is the corresponding bit from the bitstream which encrypts them both, then $a \oplus b$ and $A \oplus b$ are bits of the encrypted stream. If we xor these bits we get:

$$
(a \oplus b) \oplus(A \oplus b)=a \oplus A \oplus b \oplus b=a \oplus A
$$

so b has no influence on what's left. We can just use ideas about a and A to try to guess about them. In the case of the messages given, we are lucky (not very, given the statistics of this language!) that both of the messages begin with \mathbf{P}. The next pattern in the xored bitstream is 10101 which suggests alternating agreement and disagreement among the bitstreams. Since 1 means disagreement of bitstreams, we examine our dictionary:

$$
\mathbf{P}=1010101010 \quad \mathbf{Q}=1111111 \quad \mathbf{R}=000000
$$

and see that one of the sentences has the word \mathbf{P} and one must have \mathbf{R} because they disagree on the first bit of the third group. Now we continue, really guessing which of the sentences has \mathbf{P} and which has \mathbf{R} and following the consequences. Sometimes the wrong guess will be made so backtracking will need to be done: consideration of alternative possibilities.

Lesson from problem 4

Never use a pseudorandom bitstream more than once. Cryptanalysis can rapidly read both of the message streams - such a situation is sometimes called a "depth". There's almost no protection: a one-time pad should be used exactly once.

