March 22, 2000
Math 504: Complex Variables (Spring, 2000)

H1 Suppose {u;};jen is a sequence of harmonic functions in a domain U. If u; — u
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Note Of course one can apply this result repeatedly to get any derivative of the sequence
behaving similarly. The result will follow easily if you prove it first when U is a disc. Use
the Poisson integral inside the disc.

H2 Suppose u is harmonic in D;(0). Show that w has a unique harmonic conjugate
v = C(u) characterized by v(0) = 0. Prove that the function u — C(u) = v is linear and
continuous with the u.c.c. topology. (You may use the results of the previous problem.)
H3 a) For n € N find an explicit holomorphic function f,, with the following properties:
fn:D1(0) — S = {|Rez| < 1/n} is biholomorphic; f,, (D1(0) NR) = SNR; f,.(0) = 0.

b) Let f, = uy + iv,. Surely u, — 0 uniformly in D;(0) but sup wv,(2) = oo for all n.
z€D; (0)
Doesn’t this contradict the final conclusion of the previous problem?

The following problem will be used in class.

H4 a) Write A in polar coordinates. Conclude that any rotationally symmetric harmonic
function must be of the form Alogr + B where r = |z|

b) Suppose u is harmonic in D;(0) \{0}. Define U(r fo 9)df. Prove that U is

also harmonic.

We know: for K compact contained in U open in C, there’s a smallest positive Hy 7 >
1 so that % < Hgy for all z,y € K and all functions positive h harmonic in U.

H5 If U is a disc, show that Hx y — 1 and the diameter of K approach 0 together.

H6 Show that there are K’s whose diameters — 0 with Hg iy — oo0.

The following notorious problem is from the text Banach Spaces of Analytic Functions
by Kenneth Hoffman. Hoffman’s “analytic” is our “holomorphic”.

HT7 Let f be an analytic function in the unit disc without zeros satisfying |f| < 1. Prove

that sup |f(2)]*> < inf |f(2)|.

s IfF < 1)
HS8 In this problem please allow harmonic functions to be complex-valued. Since A is a
real differential operator, this is equivalent to asking that the real and imaginary parts of
the function be harmonic (but not necessarily related in any other way). The factorization
of A suggested in problem D10 may be useful.

a) If f is harmonic and zf(z) is harmonic, then f is analytic. (This problem is also from
Hoffman’s book.)

b) Is the statement still true when the function z is replaced by any complex analytic
function, ¢(z)? That is, given ¢(z) complex analytic, is the following correct?

If f is harmonic and ¢(z)f(2) is harmonic, then f is analytic.



