Math 504: Complex Variables (Spring, 2000)

In this problem set, U is a fixed open *connected* subset of \mathbb{C} . Z(f) will denote the set $f^{-1}(0)$, the set of zeros of f.

D1 $\mathcal{O}(U)$ is a ring. Is $\mathcal{O}(U)$ a PID?

D2 $\mathcal{O}(U)$ is a ring. Is $\mathcal{O}(U)$ a UFD?

D3 $\mathcal{O}(U)$ is a ring. Is $\mathcal{O}(U)$ Noetherian?

D4 $\mathcal{O}(U)$ is a ring. Is $\mathcal{O}(U)$ Artinian?

D5 Suppose $f, g \in \mathcal{O}(U)$ and $Z(f) \cap Z(g) = \emptyset$. Prove that there are $u, v \in \mathcal{O}(U)$ so that 1 = uf + vg. Extend this statement to finite sums.

D6 Suppose $\{f_n\}_{n\in\mathcal{N}}$ is a sequence of functions in $\mathcal{O}(U)$ with no zeros in common: $\bigcap_{n=1}^{\infty} Z(f_n) = \emptyset$. Is there a sequence of functions $\{g_n\}_{n\in\mathcal{N}}$ in $\mathcal{O}(U)$ so $\sum_{n=1}^{\infty} f_n(z)g_n(z) = 1$ for all $z \in U$?

Example Suppose $h(z) = \frac{\sin z}{z}$, an entire function with h(0) = 1. Let $j_n(z) = h(z - n)$ for $n \in \mathbb{Z}$ (a double-ended sequence). Are there entire functions $\{k_n\}_{n \in \mathbb{Z}}$ with $\sum_{n = -\infty}^{\infty} j_n(z)k_n(z)$

= 1? Of course the zero sets of any finite number of the j_n 's have non-empty intersection, but all of these zero sets have no element in common.

D7 This problem is from the text Classical Topics in Complex Function Theory by Reinhold Remmert (English translation published in 1998).

If $g \in \mathcal{M}(U)$, show that there is $f \in \mathcal{O}(U)$ so that $f(z) \neq g(z)$ for all $z \in U$.

Hint: Start with a representation $g = \frac{f_1}{f_2}$ where f_1 and f_2 have no common zeros.

Comment on algebra (D8 & D9) The ring $\mathcal{O}(U)$ has many maximal ideals. Some of them are difficult to understand*, but the <u>closed</u> maximal ideals consist of those functions vanishing at a point of U. Here "closed" refers to the topology on $\mathcal{O}(U)$ given by u.c.c. convergence. This is not very difficult to verify, but is perhaps more difficult than a homework problem should be. Therefore proving it would count as *two* homework problems!

D10 If
$$g \in C^{\infty}(U)$$
, prove that there is $f \in C^{\infty}(U)$ with $\triangle f = g$. Here $\triangle = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$.
Hint Relate \triangle and $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \overline{z}}$.

D11 Is there a Mittag-Leffler theorem for essential singularities? That is, surely there are functions with infinitely many isolated essential singularities (give an example!). If a collection of "principal parts" of such functions is given in, say, \mathbb{C} , can one "piece" them together to create a function holomorphic except for those singularities, with the given Laurent behavior at each singularity?

^{*} Unless you're a logician!