April 10, 2000

FUN With Distributions:

Math 504: Complex Variables (Spring, 2000)

J1 Find a distribution solution of $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$ (the homogeneous wave equation) defined in \mathbb{R}^2 which isn't a continuous function in \mathbb{R}^2 . More precisely, show that there is no function w continuous in \mathbb{R}^2 with w = u almost everywhere. Verify your claims, please!

J2 a) Every function in $L^1_{loc}(\mathbb{C})$ is associated to a distribution.

- b) $\log r$ is in $L^1_{loc}(\mathbb{C})$.
- c) What is $\triangle(\log r)$?

Comment The result of this problem is *very* important. Physicists have believed it for a long time. One proof of the answer to c) uses Green's identities and words like "charge" and "potential". Now mathematicians believe this result too.

J3 a) Define $T: \mathcal{O}(\mathbb{C}) \to \mathbb{C}$ by the formula $T(f) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}$. Prove that T(f) is well-defined, and that T is continuous with respect to the u.c.c. topology on $\mathcal{O}(\mathbb{C})$. b) T is not well-defined on $\mathcal{D}(\mathbb{C})$.

Comment Distributions aren't enough for all aspects of complex analysis!

The next two problems are versions of some in Forster's Lectures on Riemann Surfaces.

- **J4** Suppose $\{T_n\}_{n\in\mathbb{N}}$ is a sequence of distributions defined in an open subset U of \mathbb{C} . Define " $T_j \to T$ " (where T is also a distribution) to mean $T_j(f) \to T(f)$ for every $f \in \mathcal{D}(U)$. Prove that if $T_j \to T$, then $\frac{\partial T_j}{\partial x} \to \frac{\partial T}{\partial x}$.
- **J5** A sequence of continuous functions $\{f_n\}_{n\in\mathbb{N}}$ defined in an open subset U of \mathbb{C} converges weakly to a continuous function f if $\int_{\mathbb{C}} f_j \phi d\mathcal{L} \to \int_{\mathbb{C}} f \phi d\mathcal{L}$ for all $\phi \in \mathcal{D}(U)$. Here \mathcal{L} is two-dimensional Lebesgue measure. Prove that if every f_j is harmonic (resp. holomorphic) then f must be harmonic (resp. holomorphic).

The next three problems are from J. E. Marsden's text Elementary Classical Analysis. δ is the Dirac δ -function at 0.

- **J6** Show that $\delta''(f) = f''(0)$ for $f \in \mathcal{D}(\mathbb{R})$.
- **J7** Prove that $\sqrt{\frac{n}{\pi}}e^{-nx^2} \to \delta$ as distributions on \mathbb{R} .
- **J8** Find a sequence of continuous functions $\{g_n\}_{n\in\mathbb{N}}$ on \mathbb{R} so that $g_n\to\delta'$ as distributions.
- **J9** Suppose f is a periodic L^1_{loc} function on \mathbb{R} with period 2π . If $a_n = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} dt$, show that $f = \sum_{-\infty}^{\infty} a_n e^{int}$ as distributions.
- **J10** Suppose that $\{a_n\}_{n\in \mathbb{Z}}$ is a sequence of complex numbers with *polynomial growth*: there are $K\in\mathbb{N}$ and $c\in\mathbb{R}$ so that $|a_n|\leq c|n|^K$ for all $n\in\mathbb{Z}$. Then $\sum_{-\infty}^{\infty}a_ne^{inx}$ converges to a distribution defined on \mathbb{R} .
- **J11** "Let **L** denote the subset of \mathbb{R}^2 defined by $\{x = 0 \& y \geq 0\} \cup \{x \geq 0 \& y = 0\}$ (the union of the non-negative x- and y-axes)."* Let S be the distribution defined by integrating over **L****. What is $\frac{\partial S}{\partial z}$? Can you find T so that $\frac{\partial S}{\partial z} = T$?

^{*} Of course this is quoted from the beginning of homework A! We end as we began.

^{**} Use dx and dy appropriately.