Review Problems for the final exam in section 1 of Math 403

May 2, 2002

What follows is basically the final exam I gave last year in Math 403. I’ll happily discuss this exam with you on

\{
Wednesday, May 8, 10 AM \\
Thursday, May 9, 3:30 PM
\} in Hill 525. I should also be available in my office (try Hill 304 first, then Hill 542) during much of the week, and accessible via e-mail most of the time. Please look over this semester’s earlier exams and review sheets.

(20) 1. In this problem \(U \) will be the region in the complex plane defined by the inequalities \(r = |z| > 1 \) and \(-\frac{\pi}{2} < \text{Arg} z < \frac{3\pi}{4} \).

a) Sketch the region \(U \) on the axes given. [Axes omitted here.]

Is \(U \) a connected open set? (Yes \| No) Is \(U \) a simply connected open set? (Yes \| No)

b) Suppose \(F(z) = z^2 \). If \(z = re^{i\theta} \), write a formula for \(F(z) \) in complex exponential form. If \(V = F(U) \), the image of \(U \) under \(F \), the collection of all values of \(F \) with domain restricted to \(U \), sketch the region \(V \) on the axes given. [Axes omitted here.] Is \(V \) a connected open set? (Yes \| No) Is \(V \) a simply connected open set? (Yes \| No)

c) Suppose \(G(z) = \frac{1}{z} \). If \(z = re^{i\theta} \), write a formula for \(G(z) \) in complex exponential form. If \(W = G(U) \), the image of \(U \) under \(G \), the collection of all values of \(G \) with domain restricted to \(U \), sketch the region \(W \) on the axes given. [Axes omitted here.] Is \(W \) a connected open set? (Yes \| No) Is \(W \) a simply connected open set? (Yes \| No)

(10) 2. Find \(\text{Arg} z \) if \(z = (1 + i)^i \).

(12) 3. Describe all solutions of \(z^3 = 2i \) algebraically in either rectangular or polar form. Sketch these solutions on the axes provided. [Axes omitted here.]

(18) 4. a) Suppose \(c(x, y) \) is a harmonic function, so \(\frac{\partial^2 c}{\partial x^2} + \frac{\partial^2 c}{\partial y^2} = 0 \).

Prove that \(f = \frac{\partial c}{\partial x} - i \frac{\partial c}{\partial y} \) is analytic.

b) Verify that \(w(x, y) = \cos x \cosh y \) is harmonic, and find one harmonic conjugate.

(25) 5. Compute \(\int_{\Gamma} e^{2\pi i z} \frac{z^2}{1} \, dz \) where \(\Gamma \) is the closed curve shown.

OVER
6. a) If k is a real number with $-1 < k < 1$, derive the Laurent series representation
\[
\frac{k}{z-k} = \sum_{n=1}^{\infty} \frac{k^n}{z^n} \quad (|k| < |z| < \infty).
\]
b) Write $z = e^{i\theta}$ in the equation obtained in part a) and then equate real parts on each side of the result to derive the summation formula
\[
\sum_{n=1}^{\infty} k^n \cos n\theta = \frac{k \cos \theta - k^2}{1 - 2k \cos \theta + k^2}.
\]

7. If A is real and $A > 1$, Maple reports that
\[
\int_0^{\infty} \frac{x^2 \, dx}{(x^2 + 1)(x^2 + A^2)} = \left(\frac{1}{2} \right) \left(\frac{\pi}{A+1} \right).
\]
Check this assertion using the method of residues. Explain why some integral tends to 0 in the limit.

8. What is the radius of convergence of the Taylor series expansion of $h(z) = \frac{e^z}{(z-1)(z+2)}$ when expanded around $z = i$? Give a numerical answer. Justify why the series must converge with at least that radius and why it can’t have a larger radius.

Note Actual computation of the series is not practical.

9. Find the order of the pole of $H(z) = \frac{1}{(6\sin z + z^3 - 6z)^2}$ at $z = 0$.

10. Suppose T is the inside of the square with corners $1+i, -1+i, -1-i, and 1-i$, and S is the inside of the square with corners $3+3i, -3+3i, -3-3i, and 3-3i$. Suppose also that $f(z)$ is any entire function. Let M be the maximum of $|f''(z)|$ on T and let N be the maximum of $|f(z)|$ on S. Show that $M \leq \frac{1}{2} N$.

Hint Begin by writing some complex variables formula connecting f'' and f.

11. Suppose $F(z) = z^3 \left(\frac{1}{z+1} + \frac{1}{(z-1)^3} \right)$, and C is a simple closed curve which does not pass through 1 or -1. What are all possible values of $\int_C F(z) \, dz$ (and why)? Sketch examples of C’s which will give each value you list.

12. Find complex numbers $a, b, c,$ and d so that the linear fractional transformation $L(z) = \frac{az+b}{cz+d}$ takes $-i$ to 0, 0 to 1, and $2i$ to ∞.

Sketch the image of the unit circle $|z| = 1$ under the transformation L, and briefly explain why what was drawn is correct.