1. Use the Residue Theorem to compute \(\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^2} \).

Answer We apply the Residue Theorem to the function \(f(z) = \frac{1}{(1+z^2)^2} \) on the simple closed curve \(I_R + S_R \), where \(I_R = [-R, R] \) is an interval on the real axis, and \(S_R \) is the upper semicircle: \(|z| = R \) and \(\text{Im} \ z \geq 0 \). The curve is oriented counterclockwise, and \(R > 1 \). \(f(z) \) has isolated singularities at \(\pm i \), and since \(f(z) = \frac{1}{(z-i)^2(z+i)^2} \), the isolated singularities are poles of order 2. The singularity at \(i \) is inside the closed curve. If we write \(f(z) = \frac{H(z)}{(z-i)^2} \), then the residue of \(f(z) \) at \(z = i \) is just \(H'(i) \) since \(H(z) = H(i) + H'(i)(z-i) + \text{higher order terms} \). Here \(H(z) = \frac{1}{(z+i)^2} \) so \(H'(z) = \frac{-2z}{(z+i)^3} \) and \(H'(i) = \frac{1}{4i} \). As \(R \to \infty \), \(\int_{I_R} f(z) \, dz \to \int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^2} \).

If \(|z| = R \), \(|1 + z^2| \geq R^2 - 1 \) so that for \(R > 1 \), \(\left| \int_{S_R} f(z) \, dz \right| \leq \pi R \cdot \frac{1}{(R^2-1)^2} \) by the ML inequality. Therefore as \(R \to \infty \), \(\int_{S_R} f(z) \, dz \to 0 \). When \(R > 1 \), the Residue Theorem shows that \(\int_{I_R + S_R} f(z) \, dz = 2\pi i \cdot \frac{1}{4i} = \frac{\pi}{2} \). As \(R \to \infty \), we see that \(\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^2} = \frac{\pi}{2} \).

2. Find \(R > 0 \) so that all the roots of the polynomial \(P(z) = z^5 + 12z^4 - (1+i)z^2 + 9z - 3 \) are inside the circle \(|z| = R \).

Answer Take \(R = 100 \), \(f(z) = z^5 \), and \(g(z) = 12z^4 - (1+i)z^2 + 9z - 3 \). For \(|z| = 100 \), \(\Delta f(z) = 10^{10} \) while \(|g(z)| \leq 12|z|^4 + \sqrt{2}|z|^2 + 9|z| + 3 \leq 10^{8}(12 + \sqrt{2} + 9 + 3) < 10^{10} \). We use Rouché’s Theorem: \(f(z) \) and \(g(z) = P(z) \) must have the same number of zeros inside the circle \(|z| = 100 \). But \(f(z) \) has a zero of multiplicity 5 at 0. So \(P(z) \) must have five zeros inside \(|z| = 100 \) and \(P(z) \), a polynomial of degree 5, can have at most five zeros.

3. Use the Residue Theorem to compute \(\int_0^{2\pi} \frac{d\theta}{\cos^3 \theta} \).

Answer Since \(\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \), \(\int_0^{2\pi} \frac{d\theta}{\cos^3 \theta} = \int_0^{2\pi} \frac{d\theta}{10e^{i\theta} + 3(e^{i\theta})^3} \). If \(z = e^{i\theta} \) so \(dz = ie^{i\theta} d\theta \), the definite integral is recognized as a parameterization of a line integral around the unit circle, \(|z| = 1 \): \(\frac{1}{i} \frac{2}{3z^2 + 1 + 2} \, dz \). \(3z^2 + 10z + 3 = 0 \) when \(z = \frac{-10 \pm \sqrt{100 - 36}}{6} = \frac{-1 \pm 2}{3} \). The integrand has isolated singularities which are both poles of order 1 at \(-\frac{1}{3} \) and \(\frac{1}{3} \). To use the Residue Theorem, we need the residue inside \(|z| = 1 \). Since \(\frac{2}{3z^2 + 10z + 3} = \frac{2}{3(z + \frac{3}{2})} \), the residue of the integrand at \(-\frac{1}{3} \) is \(\frac{2}{3(z + \frac{3}{2})} \) at \(z = -\frac{1}{3} \), which is \(-\frac{1}{3} \). Then the Residue Theorem gives the value of the desired integral: \(2\pi i \cdot -\frac{1}{3} \cdot \frac{2}{3} = \frac{\pi i}{3} \).

4. Suppose \(Q(z) = \frac{(e^z - 1)^2}{z^4} \). Identify as precisely as possible the type of the isolated singularity at 0 of \(Q(z) \): is it removable, a pole, or essential? If it is a pole, find the order of the pole. Find the first two non-zero terms of the Laurent series of \(Q(z) \) at 0. Find the residue of \(Q(z) \) at 0.

Answer We know \(e^z = 1 + z + \frac{z^2}{2} + \text{higher order terms} \) so that \((e^z - 1)^2 = \frac{(z + \frac{z^2}{2} + \text{h.o.t.})^2}{z^4} = \frac{z^2 + z^3 + \text{h.o.t.}}{z^4} = \frac{1}{z} + \frac{1}{z} + \text{h.o.t.} \) and we can read off the answers: \(Q(z) \) has a pole of order 2 at 0, its Laurent series begins \(\frac{1}{z^2} + \frac{1}{z} \), and its residue at 0 is 1.

OVER
5. Suppose $f(z)$ is an entire function (analytic in the whole plane) and that $|f(z)| \leq |e^z|$ for all complex numbers z. Show that there must be a complex number C with $|C| \leq 1$ so that $f(z) = Ce^z$ for all z.

Answer Since e^z is never 0, $F(z) = \frac{f(z)}{e^z}$ is an entire function. The hypotheses say that $|F(z)| \leq 1$ for all z. Liouville's Theorem implies that $F(z)$ is constant, and it must be a constant C with $|C| \leq 1$. So $\frac{f(z)}{e^z} = C$ for all z, and $f(z) = Ce^z$ for all z, as desired.

6. a) Compute $\int_{|z|=1} \frac{e^z}{z} \, dz$ using any applicable theorem.

Answer We could use the Residue Theorem again, but the Cauchy Integral Formula for $z = 0$ also applies. The result is $2\pi i$ multiplied by the value of e^z at $z = 0$. This value is just 1, so the integral’s value is $2\pi i$.

b) Use the answer given for part a) to find the exact values of $\int_{0}^{2\pi} e^{i \cos \theta} \cos (\sin \theta) \, d\theta$ and of $\int_{0}^{2\pi} e^{i \cos \theta} \sin (\sin \theta) \, d\theta$.

Answer If $z = e^{i \theta}, e^z = e^{(e^{i \theta})} = e^{i \cos \theta + i \sin \theta} = e^{i \cos \theta} e^{i \sin \theta} = e^{i \cos \theta} (\cos(\sin \theta) + i \sin(\sin \theta))$. Also $dz = ie^{i \theta} \, d\theta$ so that $\frac{dz}{z} = \frac{ie^{i \theta} \, d\theta}{e^{i \theta}} = i d\theta$. Therefore $\int_{|z|=1} \frac{e^z}{z} \, dz = \int_{0}^{2\pi} e^{i \cos \theta} (\cos(\sin \theta) + i \sin(\sin \theta)) i \, d\theta$. Part a) tells us this is $2\pi i$. We see that $\int_{0}^{2\pi} e^{i \cos \theta} \cos (\sin \theta) \, d\theta = 2\pi$ and $\int_{0}^{2\pi} e^{i \cos \theta} \sin (\sin \theta) \, d\theta = 0$ by separating the real and imaginary parts. This is consistent with Maple’s approximations.

Comment The versions of Maple I have at home can’t compute this integral symbolically, but the latest version at Rutgers can.

7. The following information is known about a function, $F(z)$:

 i) $F(z)$ is defined and analytic for all $z \neq 0$.
 ii) $F(i) = 3$.
 iii) For all positive integers, n, $F(\frac{1}{n}) = 0$.

a) What kind of isolated singularity must $F(z)$ have at 0? Explain your answer.

Answer If 0 were a pole then $|F(\frac{1}{n})| \to \infty$ as $n \to \infty$ and this is false by iii). If 0 were a removable singularity, then $F(0) = \lim_{n \to \infty} F(\frac{1}{n}) = 0$. If this is true, $F(z)$ with the value 0 at $z = 0$ would be entire. Then $F(z)$ would be 0 on a sequence with a limit point. Such a function would need to be 0 everywhere by the Identity Theorem (“Two functions analytic in a connected open set which agree on a set with a limit point must actually agree everywhere in the set.”), but this would contradict ii), that $F(i) = 3$. The only alternative is that $F(z)$ has an essential singularity at $z = 0$.

b) What is the radius of convergence of the Taylor series expansion centered at $z = i$ of the function $F(z)$? Explain your answer.

Answer The radius of convergence is at least 1, because $F(z)$ is certainly analytic in a disc of radius 1 centered at i. If the radius of convergence were larger than 1, the sum would represent an analytic function agreeing with $F(z)$ in an open disc, and therefore agreeing with $F(z)$ for all $z \neq 0$ in the disc (using the Identity Theorem again). Then $F(z)$ would have a removable singularity at 0 because the Taylor series would behave like an analytic function near 0. Since $F(z)$ has an essential singularity at 0, this is impossible. So the radius of convergence must be exactly 1.