1. Suppose \(f: \mathbb{R} \to \mathbb{R} \) and \(c \in \mathbb{R} \). Define “\(f \) is continuous at \(c \in \mathbb{R} \).”

2. Suppose \(f: \mathbb{R} \to \mathbb{R} \) and \(c \in \mathbb{R} \). State a sequential criterion which is equivalent to “\(f \) is continuous at \(c \in \mathbb{R} \).”

3. Suppose \(A \) is a subset of \(\mathbb{R} \). Define “\(c \) is a cluster point of \(A \).”

4. Define “\((x_n)\) is a Cauchy sequence.”

5. Define “An infinite series \(\sum_{j=1}^{\infty} a_j \) converges and its sum is \(L \).”