Formula sheet for the final exam in Math 291, spring 2003

FIRST VERSION 3/2/2003: CORRECTED FROM FALL 2002; AMENDED 3/13/2003; INCREASED 5/5/2003

Triangle inequality: $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$. Cauchy-Schwarz: $|\mathbf{v} \cdot \mathbf{w}| \le ||\mathbf{v}|| \, ||\mathbf{w}||$.

Distance from $P_0(x_0, y_0, z_0)$ to $P_1(x_1, y_1, z_1)$ is $\sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2 + (z_0 - z_1)^2}$

Distance from $P_1(x_1, y_1, z_1)$ to the plane ax + by + cz = d is $\frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$.

Sphere: $(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$

Plane: $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$ where $\mathbf{n} = \langle a, b, c \rangle$

Line: $\{x = x_0 + at, y = y_0 + bt, z = z_0 + ct\}$ through (x_0, y_0, z_0) in direction $\langle a, b, c \rangle$ $\|\mathbf{a}\| = \sqrt{(a_1)^2 + (a_2)^2 + (a_3)^2}$

 $|\mathbf{a} \cdot \mathbf{b}| = ||\mathbf{a}|| \, ||\mathbf{b}|| \, \cos \theta \, (\text{If } = 0, \text{ then } \mathbf{a} \perp \mathbf{b}.) \qquad ||\mathbf{a} \times \mathbf{b}|| = ||\mathbf{a}|| \, ||\mathbf{b}|| \, \sin \theta \, (\text{If } \mathbf{a}||\mathbf{b}, \text{ this } = 0.)$

 $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a} \quad \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \quad \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$ $\operatorname{comp}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|} \quad \operatorname{proj}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}$

Volume of a parallelepiped with edges \mathbf{a} , \mathbf{b} , \mathbf{c} : $\|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})\|$

Arc length: $\int_a^b \|\mathbf{r}'(t)\| dt$ $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$ $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$ $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$

$$\kappa = \left\| \frac{d\mathbf{T}}{ds} \right\| = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3} \stackrel{\text{2 dim}}{=} \frac{|y''(t)x'(t) - x''(t)y'(t)|}{(x'(t)^2 + y'(t)^2)^{3/2}} \stackrel{\text{y=}\underline{f}(x)}{=} \frac{|f''(x)|}{(1 + (f'(x))^2)^{3/2}}$$

$$\tau = \frac{(\mathbf{r}'(t) \times \mathbf{r}''(t)) \cdot \mathbf{r}'''(t)}{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|^2}. \quad \text{Frenet-Serret: } \frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}, \frac{d\mathbf{N}}{ds} = -\kappa \mathbf{T} + \tau \mathbf{B}, \frac{d\mathbf{B}}{ds} = -\tau \mathbf{N}.$$

Tangent plane to z = f(x,y) at $P(x_0,y_0,z_0)$: $z-z_0 = f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0)$ Linear approximation to f(x,y) at (a,b): $f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$

Tangent plane to F(x, y, z) = 0:

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

If y implicitly defined by y = f(x) in F(x,y) = 0 then $\frac{dy}{dx} = -\frac{F_x}{F_x}$.

If z implicitly defined by z = f(x, y) in F(x, y, z) = 0 then $z_x = -\frac{F_x}{F_x}$ and $z_y = -\frac{F_y}{F_x}$.

$$\nabla f = \langle f_x, f_y, f_z \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k} \quad D_{\mathbf{u}} f(x, y, z) = \nabla f(x, y, z) \cdot \mathbf{u}$$

Some chain rules:

If
$$z = f(x, y)$$
 and $x = x(t)$ and $y = y(t)$, then $\frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$

If
$$z = f(x, y)$$
 and $x = g(s, t)$ and $y = h(s, t)$, then $\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial g}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial h}{\partial s}$.

Suppose $f_x(a,b) = 0$ and $f_y(a,b) = 0$. Let $H = H(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2$.

- a) If H > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a local minimum.
- b) If H > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum.
- c) If H < 0, then f(a, b) is not a local maximum or minimum (f has a saddle point).

A real-valued function $F(\mathbf{x})$ is continuous at $\mathbf{x_0}$ if, given any $\varepsilon > 0$, there is a $\delta > 0$ so that whenever $\|\mathbf{x} - \mathbf{x_0}\| < \delta$, then $|F(\mathbf{x}) - F(\mathbf{x_0})| < \varepsilon$.

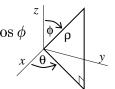
Lagrange multipliers for one constraint

If G(the variables) = a constant is the constraint and we want to extremize the objective function, F (the variables), then the extreme values can be found among F's values of the solutions of the system of equations $\nabla G = \lambda \nabla F$ (a vector abbreviation for the equations $\lambda \frac{\partial F}{\partial \star} = \frac{\partial G}{\partial \star}$ where \star is each of the variables) and the constraint equation.

Polar coordinates

 $dA = r dr d\theta$

 $x = r \cos \theta \quad y = r \sin \theta$ $r^2 = x^2 + y^2 \quad \theta = \arctan(\frac{y}{x})$ $dA = r dr d\theta$ $x = \rho \sin \phi \cos \theta \quad y = \rho \sin \phi \sin \theta \quad z = \rho \cos \phi$ $\rho^2 = x^2 + y^2 + z^2$ $dV = \rho^2 \sin \phi \cos \theta \quad z = \rho \cos \phi$



Change of variables in 2 dimensions

$$\iint_{R} f(x,y) \ dA = \iint_{\tilde{R}} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du \ dv; \ \frac{\partial(x,y)}{\partial(u,v)} = \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}, \text{ the Jacobian.}$$

Total mass of a mass distribution $\rho(x,y,z)$ over a region R of \mathbb{R}^3 is $\iiint_R \rho(x,y,z) dV$.

Line integral formulas

$$\int_{C} f(x,y) \, ds = \int_{a}^{b} f(x(t),y(t)) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} \, dt$$

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt = \int_{C} \mathbf{F} \cdot \mathbf{T} \, ds$$

$$\int_{C} P(x,y) \, dx + Q(x,y) \, dy = \int_{a}^{b} P(x(t),y(t))x'(t) \, dt + Q(x(t),y(t))y'(t) \, dt$$

$$\mathbf{Green's Theorem}$$

$$\int_{C} P \, dx + Q \, dy = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA$$
These P, Q pairs
$$\begin{cases}
P = -y \text{ and } Q = 0 \\
P = 0 \text{ and } Q = x \\
P = -\frac{1}{2}y \text{ and } Q = \frac{1}{2}x
\end{cases}$$

A conservative vector field $\mathbf{V} = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ is a gradient vector field: there's f(x,y) with $\nabla f = \mathbf{V}$ so $\frac{\partial f}{\partial x} = P$ and $\frac{\partial f}{\partial y} = Q$. f is a potential for \mathbf{V} . A conservative vector field is **path independent**. Work done by such a vector field over a **closed curve** is 0. For V conservative with potential $f: \int_C P dx + Q dy = f(\mathsf{THE}\;\mathsf{END}) - f(\mathsf{THE}\;\mathsf{START}).$ If $P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ is conservative, then $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$. If the region is **simply connected** (means **no holes**) then the converse is true, and f is both $\int P(x,y) dx$ and $\int Q(x,y) dy$.

Surfaces: If $\mathbf{n} = \frac{\mathbf{N}}{\|\mathbf{N}\|}$, flux is $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$.

As a graph:
$$z = f(x, y)$$
 and $\mathbf{N} = -\frac{\partial f}{\partial x}\mathbf{i} - \frac{\partial f}{\partial y}\mathbf{j} + \mathbf{k}$ and $dS = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + 1} dA_{xy}$.

Parametrically: $\mathbf{P}(u, v) = x(u, v)\mathbf{i} + y(u, v)\mathbf{j} + z(u, v)\mathbf{k}$ and $\mathbf{N} = \frac{\partial \mathbf{P}}{\partial u} \times \frac{\partial \mathbf{P}}{\partial v}$ and $dS = \|\frac{\partial \mathbf{P}}{\partial u} \times \frac{\partial \mathbf{P}}{\partial v}\| dA_{uv}$.

If
$$\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}$$
 and \mathbf{F} is a vector field then $\begin{cases} \operatorname{curl} F = \nabla \times \mathbf{F}, & \text{a vector field.} \\ \operatorname{div} F = \nabla \cdot \mathbf{F}, & \text{a function.} \end{cases}$

Potentials in \mathbb{R}^3

If $\mathbf{F} = \nabla f$ and C is a curve, then $\int_C P dx + Q dy + R dz = f(\mathsf{THE} \; \mathsf{END}) - f(\mathsf{THE} \; \mathsf{START})$, path independence holds, the work over a closed curve is 0, and $\operatorname{curl}(\nabla f) = 0$. Conversely, if F is defined in all of \mathbb{R}^3 with curl F=0 (the cross-partials "match") then **F** has a potential, f, so $\nabla f = \mathbf{F}$. f is obtained by comparing partial integrals of the components of \mathbf{F} .

Stokes' Theorem

$$\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} \, dS = \int_{C} \mathbf{F} \cdot d\mathbf{r} \quad \left[= \int_{C} P \, dx + Q \, dy + R \, dz \right]$$

Divergence Theorem

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_{E} \operatorname{div} F \, dV \, \left[= \iiint_{E} \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \, dV \right]$$